
NewOrderDAO - Y2K
Finance

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: July 29th, 2022 - August 4th, 2022

Visit: Halborn.com

DRAFT

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) WITHDRAW FEE IS NOT VALIDATED - MEDIUM 13

Description 13

Code Location 13

Proof of Concept 13

Risk Level 15

Recommendation 15

3.2 (HAL-02) PEGORACLE CONTRACT HAS HARD-CODED DECIMALS - MEDIUM

16

Description 16

Code Location 16

Proof of Concept 16

Risk Level 18

Recommendation 18

3.3 (HAL-03) DIVIDE BEFORE MULTIPLY - LOW 19

Description 19

1

DRAFT

Code Location 19

Risk Level 19

Recommendation 19

3.4 (HAL-04) PEGORACLE CONTRACT IS NOT CHECKING THE SEQUENCER STATE -

LOW 20

Description 20

Risk Level 20

Recommendation 20

3.5 (HAL-05) MISSING ZERO ADDRESS CHECK - INFORMATIONAL 21

Description 21

Code Location 21

Risk Level 21

Recommendation 22

3.6 (HAL-06) CREATESTAKINGREWARDS COULD BE DEFINED AS EXTERNAL -

INFORMATIONAL 23

Description 23

Code Location 23

Risk Level 23

Recommendation 23

3.7 (HAL-07) MISSING NATSPEC DOCUMENTATION - INFORMATIONAL 24

Description 24

Code Location 24

Risk Level 24

Recommendation 24

4 AUTOMATED TESTING 24

4.1 STATIC ANALYSIS REPORT 26

Description 26

2

DRAFT

Slither results 26

3

DRAFT

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/04/2022 Pawel Bartunek

0.2 Document Updated 08/05/2022 Pawel Bartunek

0.3 Draft Review 08/05/2022 Kubilay Onur Gungor

0.4 Draft Review 08/05/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn kubilay.gungor@halborn.com

Pawel Bartunek Halborn pawel.bartunek@halborn.com

4

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:kubilay.gungor@halborn.com
mailto:pawel.bartunek@halborn.com

5

EXECUTIVE OVERVIEW

DRAFT

1.1 INTRODUCTION

NewOrderDAO engaged Halborn to conduct a security audit on their smart

contracts beginning on July 29th, 2022 and ending on August 4th, 2022

. The security assessment was scoped to the smart contracts provided to

the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided one week for the engagement and assigned

a full-time security engineer to audit the security of the smart con-

tract. The security engineer is a blockchain and smart-contract security

expert with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that need to be re-

viewed by the NewOrderDAO team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation, automated testing techniques

help enhance coverage of the code and can quickly identify items that do

not follow security best practices. The following phases and associated

tools were used throughout the term of the audit:

6

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

• Research into architecture and purpose.

• Smart contract manual code review and walk through.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph).

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Static Analysis of security for scoped contract, and imported func-

tions (Slither).

• Local or Testnet deployment (Brownie, Foundry, Remix IDE).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1.4 SCOPE

The assessment was scoped to the repositories listed below:

• Y2K core, Rewards

• Commit: 5dcfcf03b2c9a861679a810f1c5e2ebe0dcb21cc

• New contracts:

• PegOracle.sol

• RewardsFactory.sol

• Modified contracts (withdraw fee implementation):

• Vault.sol

• VaultFactory.sol

Out-of-Scope: Other smart contracts in the repository, external libraries

and economical attacks.

9

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/new-order-network/Y2K-smartcontracts/tree/5dcfcf03b2c9a861679a810f1c5e2ebe0dcb21cc

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 2 3

IM
PA
CT

LIKELIHOOD

(HAL-02)

(HAL-01)

(HAL-03)
(HAL-04)

(HAL-05)
(HAL-06)
(HAL-07)

10

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 WITHDRAW FEE IS NOT VALIDATED Medium -

HAL-02 PEGORACLE CONTRACT HAS HARD
CODED DECIMALS

Medium -

HAL-03 DIVIDE BEFORE MULTIPLY Low -

HAL-04 PEGORACLE CONTRACT IS NOT
CHECKING THE SEQUENCER STATE

Low -

HAL-05 MISSING ZERO ADDRESS CHECK Informational -

HAL-06 CREATESTAKINGREWARDS COULD
BE DEFINED AS EXTERNAL

Informational -

HAL-07 MISSING NATSPEC
DOCUMENTATION

Informational -

11

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

12

FINDINGS & TECH
DETAILS

DRAFT

3.1 (HAL-01) WITHDRAW FEE IS NOT
VALIDATED - MEDIUM

Description:

The withdrawalFee parameter of the Vault can be set to over 100% using

changeWithdrawalFee function. Such a high fee will cause a transaction

to revert because of an integer underflow error during a withdrawal.

Code Location:

Setter, not validating withdraw fee value:

Listing 1: Y2K-smartcontracts/Core Earthquake/src/Vault.sol (Line 344)

343 function changeWithdrawalFee(uint256 _riskWithdrawalFee) public

ë onlyFactory {

344 withdrawalFee = _riskWithdrawalFee;

345 }

Part of the withdraw function, subtracting calculated fee value from

entitled shares:

Listing 2: Y2K-smartcontracts/Core Earthquake/src/Vault.sol (Line 240)

238 // Taking fee from the amount

239 uint feeValue = calculateWithdrawalFeeValue(entitledShares);

240 entitledShares = entitledShares - feeValue;

241 asset.safeTransfer(treasury , feeValue);

Proof of Concept:

Foundry test case, changing withdraw fee to 120%, causing arithmetic

error:

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Listing 3: withdrawalFee underflow (Line 26)

1 function testWithdrawFeeOverflow () public {

2

3 uint256 fee = 10;

4 uint256 withdrawalFee = 50;

5 int256 strikePrice = 120000000; //1$ = 100000000

6 uint256 epochBegin = block.timestamp + 2 days;

7 uint256 epochEnd = block.timestamp + 30 days;

8

9 (address insr , address risk) = CreationNewVaults(

10 fee ,

11 withdrawalFee ,

12 USDC ,

13 strikePrice ,

14 epochBegin ,

15 epochEnd ,

16 USDC_oracle ,

17 "Y2K.USDC_1 ,20$"

18);

19

20 address riskUser = address (3);

21

22 DepositRisk(riskUser , 20 ether , epochEnd , risk);

23 NODepegKeeper(epochEnd , insr , risk);

24

25 // update withrdaw fee to 120%

26 vaultFactory.changeWithdrawalVaultFee (1, 1200);

27

28 // withrdaw risk

29 vm.startPrank(riskUser);

30 Vault riskVault = Vault(risk);

31 uint256 risk_user_vaultbalance = riskVault.balanceOf(riskUser ,

ë epochEnd);

32

33 vm.expectRevert(stdError.arithmeticError);

34 riskVault.withdraw(

35 epochEnd ,

36 risk_user_vaultbalance ,

37 riskUser ,

38 riskUser

39);

40 vm.stopPrank ();

41 }

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to add a boundary check for the fee value setter. It

should not be possible to set fees over 100%.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.2 (HAL-02) PEGORACLE CONTRACT HAS
HARD-CODED DECIMALS - MEDIUM

Description:

The PegOracle.sol contract is using the hard-coded value of 10e7 in

the price calculation. Some price feeds can use a different number of

decimals.

Most of the Arbitrum price feeds are using 8 decimals, but there are

feeds with 9 or 18.

Using feeds with a different number of decimals with the current imple-

mentation may cause improper rate calculation.

Code Location:

Listing 4: Y2K-smartcontracts/Core Earthquake/src/PegOracle.sol (Line

56)

56 return (roundID1 , (price1 *10e7/price2 *10e7)/10e7 , startedAt1 ,

ë timeStamp1 , answeredInRound1);

Proof of Concept:

Example price calculation in Brownie, simulating oracles with different

a number of decimals (8 and 18):

Listing 5: rate calculation in Brownie (Lines 13,22)

1 oracle = Contract.from_explorer("0

ë x07C5b924399cc23c24a95c8743DE4006a32b7f2a")

2 oracle2 = Contract.from_explorer("0

ë x639Fe6ab55C921f74e7fac1ee960C0B6293ba612")

3 >>> price1 = oracle.latestRoundData ()[1]

4 >>> price2 = oracle2.latestRoundData ()[1]

5 >>> price1

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://docs.chain.link/docs/arbitrum-price-feeds/

6 161333957890

7 >>> price2

8 165018000000

9 >>> price2 = price2 * 10e9

10 >>> int(price2)

11 1650179999999999868928

12 >>> int((price1 *10e7/price2 *10e7)/10e7)

13 0

14 >>> price1 = oracle.latestRoundData ()[1]

15 >>> price2 = oracle2.latestRoundData ()[1]

16 >>> price1 = price1 * 10e9

17 >>> int(price1)

18 1613339578900000014336

19 >>> int(price2)

20 165018000000

21 >>> int((price1 *10e7/price2 *10e7)/10e7)

22 977674907525239808

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Similar test case in Foundry:

Listing 6: Foundry PoC (Line 11)

1 function testOracleDifferentDecimals () public {

2 int256 price1 = stETH_Oracle.getOracle1_Price ();

3 int256 price2 = stETH_Oracle.getOracle2_Price ();

4

5 price2 = price2 * 10e9;

6

7 int256 rate = int256(price1 *10e7/price2 *10e7)/10e7;

8

9 emit log_named_int("Oracle 1 Price", price1);

10 emit log_named_int("Oracle 2 Price", price2);

11 emit log_named_int("Rate: ", rate);

12 assertEq(rate , 0);

13 }

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

OpenZeppelin guidelines regarding Chainlink price feeds recommends to:

“Always check the units and decimals for each price feed.”.

It is recommended to consider using decimals() method to define a number

of decimals for a given price feed and adjust calculation, or verify the

number of Oracle decimals in the constructor and allow only ones with the

desired number of decimals.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://blog.openzeppelin.com/secure-smart-contract-guidelines-the-dangers-of-price-oracles/

3.3 (HAL-03) DIVIDE BEFORE
MULTIPLY - LOW

Description:

Solidity integer division might truncate. As a result, performing multi-

plication before division can sometimes avoid loss of precision. In the

PegOracle contract, the rate calculation formula the division is being

performed before the multiplication operation.

Code Location:

Listing 7: Y2K-smartcontracts/Core Earthquake/src/PegOracle.sol (Line

56)

56 return (roundID1 , (price1 *10e7/price2 *10e7)/10e7 , startedAt1 ,

ë timeStamp1 , answeredInRound1);

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Consider doing multiplication operation before division to prevail pre-

cision in the values in non-floating data type.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.4 (HAL-04) PEGORACLE CONTRACT IS
NOT CHECKING THE SEQUENCER STATE -
LOW

Description:

The PegOracle.sol contract is not validating the sequencer state.

According to Chainlink documentation, when consuming a price feed on

Arbitrum, it is a good practice to check the sequencer state:

“As a best practice, use the L2 sequencer feed to verify the status of

the sequencer when running applications on the Arbitrum network. See the

L2 Sequencer Uptime Feeds page for examples.”

source: Chainlink documentation

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Consider adding a sequencer check to the price feed consumer implementa-

tion.

References:

Chainlink example code.

Arbitrum sequencer flag.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://docs.chain.link/docs/arbitrum-price-feeds/
https://docs.chain.link/docs/l2-sequencer-flag/#example-code
https://docs.chain.link/docs/l2-sequencer-flag/#arbitrum

3.5 (HAL-05) MISSING ZERO ADDRESS
CHECK - INFORMATIONAL

Description:

The constructors of PegOracle.sol contract is not validating oracle ad-

dresses. It is possible to set an oracle with 0x0 address in PegOracle

contract, making getting a price impossible.

The constructor of RewardsFactory is not validating supplied addresses.

Code Location:

Listing 8: Y2K-smartcontracts/Core Earthquake/src/PegOracle.sol (Lines

15,16)

14 constructor(address _oracle1 , address _oracle2) {

15 oracle1 = _oracle1;

16 oracle2 = _oracle2;

17 }

Listing 9: Y2K-smartcontracts/Core Earthquake/src/rewards/RewardsFactory.sol

(Lines 23,24,25)

22 constructor(address _govToken , address _factory) {

23 admin = msg.sender;

24 govToken = _govToken;

25 factory = _factory;

26 }

Risk Level:

Likelihood - 1

Impact - 1

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

Consider adding a proper address validation in every state variable

assignment done from user-supplied input.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.6 (HAL-06) CREATESTAKINGREWARDS
COULD BE DEFINED AS EXTERNAL -
INFORMATIONAL

Description:

Public functions that are never called by the contract should be declared

external to save gas.

Code Location:

• createStakingRewards function in RewardsFactory.sol contract

• latestRoundData, getOracle1_Price, getOracle2_Price functions in

PegOracle.sol contract

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Use the external attribute for functions never called from the contract.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.7 (HAL-07) MISSING NATSPEC
DOCUMENTATION - INFORMATIONAL

Description:

Solidity contracts can use a special form of comments to provide rich

documentation for functions, return variables and more. This special form

is named the Ethereum Natural Language Specification Format (NatSpec).

Code Location:

contracts:

• PegOracle.sol

• RewardsFactory.sol

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider adding NatSpec documentation at the beginning of each function.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

https://docs.soliditylang.org/en/v0.8.15/natspec-format.html

25

AUTOMATED TESTING

DRAFT

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

abi and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

PegOracle.sol:

Listing 10

1 PegOracle.latestRoundData () (src/PegOracle.sol #19 -57) performs a

ë multiplication on the result of a division:

2 -(roundID1 ,(price1 * 10e7 / price2 * 10e7) / 10e7 ,

ë startedAt1 ,timeStamp1 ,answeredInRound1) (src/PegOracle.sol #56)

3 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#divide -before -multiply

4

5 PegOracle.constructor(address ,address)._oracle1 (src/PegOracle.sol

ë #14) lacks a zero -check on :

6 - oracle1 = _oracle1 (src/PegOracle.sol #15)

7 PegOracle.constructor(address ,address)._oracle2 (src/PegOracle.sol

ë #14) lacks a zero -check on :

8 - oracle2 = _oracle2 (src/PegOracle.sol #16)

9 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#missing -zero -address -validation

10

11 Different versions of Solidity are used:

12 - Version used: ['0.8.15', '^0.8.0 ']

13 - ^0.8.0 (lib/chainlink/contracts/src/v0.8/ interfaces/

ë AggregatorV3Interface.sol #2)

14 - 0.8.15 (src/PegOracle.sol #2)

26

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

15 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#different -pragma -directives -are -used

16

17 Pragma version ^0.8.0 (lib/chainlink/contracts/src/v0.8/ interfaces/

ë AggregatorV3Interface.sol #2) allows old versions

18 Pragma version0 .8.15 (src/PegOracle.sol #2) necessitates a version

ë too recent to be trusted. Consider deploying with

ë 0.6.12/0.7.6/0.8.7

19 solc -0.8.15 is not recommended for deployment

20 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#incorrect -versions -of -solidity

21

22 Function PegOracle.getOracle1_Price () (src/PegOracle.sol #59 -76) is

ë not in mixedCase

23 Function PegOracle.getOracle2_Price () (src/PegOracle.sol #78 -95) is

ë not in mixedCase

24 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#conformance -to -solidity -naming -conventions

25

26 Variable PegOracle.getOracle1_Price ().answeredInRound1 (src/

ë PegOracle.sol #68) is too similar to PegOracle.latestRoundData ().

ë answeredInRound2 (src/PegOracle.sol #47)

27 Variable PegOracle.latestRoundData ().answeredInRound1 (src/

ë PegOracle.sol #32) is too similar to PegOracle.latestRoundData ().

ë answeredInRound2 (src/PegOracle.sol #47)

28 Variable PegOracle.getOracle2_Price ().answeredInRound1 (src/

ë PegOracle.sol #87) is too similar to PegOracle.latestRoundData ().

ë answeredInRound2 (src/PegOracle.sol #47)

29 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#variable -names -are -too -similar

30

31 latestRoundData () should be declared external:

32 - PegOracle.latestRoundData () (src/PegOracle.sol #19 -57)

33 getOracle1_Price () should be declared external:

34 - PegOracle.getOracle1_Price () (src/PegOracle.sol #59 -76)

35 getOracle2_Price () should be declared external:

36 - PegOracle.getOracle2_Price () (src/PegOracle.sol #78 -95)

37 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#public -function -that -could -be -declared -external

38 src/PegOracle.sol analyzed (2 contracts with 78 detectors), 15

ë result(s) found

27

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

RewardsFactory.sol

Listing 11

1 RewardsFactory.constructor(address ,address)._factory (src/rewards/

ë RewardsFactory.sol #22) lacks a zero -check on :

2 - factory = _factory (src/rewards/RewardsFactory.

ë sol #25)

3 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#missing -zero -address -validation

4 Parameter RewardsFactory.createStakingRewards(uint256 ,uint256).

ë _marketIndex (src/rewards/RewardsFactory.sol #44) is not in

ë mixedCase

5 Parameter RewardsFactory.createStakingRewards(uint256 ,uint256).

ë _epoch (src/rewards/RewardsFactory.sol #44) is not in mixedCase

6 Parameter RewardsFactory.getHashedIndex(uint256 ,uint256)._index (

ë src/rewards/RewardsFactory.sol #62) is not in mixedCase

7 Parameter RewardsFactory.getHashedIndex(uint256 ,uint256)._epoch (

ë src/rewards/RewardsFactory.sol #62) is not in mixedCase

8 Variable RewardsFactory.hashedIndex_StakingRewards (src/rewards/

ë RewardsFactory.sol #38) is not in mixedCase

9 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#conformance -to -solidity -naming -conventions

10 createStakingRewards(uint256 ,uint256) should be declared external:

11 - RewardsFactory.createStakingRewards(uint256 ,uint256) (

ë src/rewards/RewardsFactory.sol #44 -60)

12 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#public -function -that -could -be -declared -external

The Slither results were analyzed, confirmed findings are included in

the report. Remaining issues are connected to external libraries or best

practices (like similar variable names, mixed case, etc).

28

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

THANK YOU FOR CHOOSING

DRAFT

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

