
Y2K Finance

Smart Contract Security Assessment

October 30, 2023

Prepared for:

Last Oracle, 0xHarbs, 3xHarry, Crypwalk

Y2K Finance

Prepared by:

Katerina Belotskaia and Nipun Gupta

Zellic Inc.

Contents

About Zellic 4

1 Executive Summary 5

1.1 Goals of the Assessment . 5

1.2 Non-goals and Limitations . 5

1.3 Results . 5

2 Introduction 7

2.1 About Y2K Finance . 7

2.2 Methodology . 7

2.3 Scope . 8

2.4 Project Overview . 9

2.5 Project Timeline . 10

3 Detailed Findings 11

3.1 Emissions can be claimed multiple times 11

3.2 The value of queuedWithdrawalTvl can be artificially inflated 13

3.3 The lack of token addresses’ verification 15

3.4 The lack of verification of the payload data 18

3.5 Incorrect loop implementation in the function clearQueuedDeposits . . 20

3.6 Lack of data validation for trustedRemoteLookup 22

3.7 Array out-of-bound exception in _removeVaults 24

3.8 The function _removeVaults returns early 26

3.9 The weightStrategy range violation . 28

3.10 Incompatibility with USDT token . 30

Zellic 1 Y2K Finance

3.11 Conversion between different units does not account for token decimals 33

3.12 Malicious users can profit due to temporary exchange rate fluctuations 35

3.13 Incorrect weights calculation . 37

3.14 Incorrect return value in fetchEpochIds in case of invalid vaults 39

4 Discussion 41

4.1 Variable naming suggestion . 41

4.2 Documentation contains additional parameter that is not included in
the code . 41

4.3 The function _swapUniswapV2 can be rewritten as it only expects one
token swap . 41

4.4 LayerZero configuration . 42

4.5 Use Non-blocking pattern instead of blocking pattern in lzReceive . . . 43

4.6 Use reentrancy guards in deposit and withdraw functions 43

5 Threat Model 45

5.1 Module: ERC4626.sol . 45

5.2 Module: HookAaveFixYield.sol . 48

5.3 Module: HookAave.sol . 49

5.4 Module: QueueContract.sol . 54

5.5 Module: StrategyVault.sol . 55

5.6 Module: SwapRouter.sol . 67

5.7 Module: bridgeController.sol . 69

5.8 Module: curve.sol . 74

5.9 Module: swapController.sol . 79

5.10 Module: uniswapV2.sol . 81

5.11 Module: uniswapV3.sol . 84

5.12 Module: vaultController.sol . 88

Zellic 2 Y2K Finance

5.13 Module: zapDest.sol . 91

5.14 Module: zapFrom.sol . 96

6 Assessment Results 101

6.1 Disclaimer . 101

Zellic 3 Y2K Finance

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.

Zellic 4 Y2K Finance

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

1 Executive Summary

Zellic conducted a security assessment for Y2K Finance from August 16th to
September 4th, 2023. During this engagement, Zellic reviewed Y2K Finance’s code
for security vulnerabilities, design issues, and general weaknesses in security posture.

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to
answer. These questions are agreed upon through close communication between
Zellic and the client. In this assessment, we sought to answer the following questions:

• Do users receive correct amounts when depositing, queuing deposits,
withdrawing, queueing withdrawals, and claiming emissions?

• Could funds be blocked due to incomplete Stargate/LayerZero bridge
transactions?

• Are there problems with incorrect balance management?

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.

1.3 Results

During our assessment on the scoped Y2K Finance contracts, we discovered 14
findings. One critical issue was found. Three were of high impact, four were of
medium impact, fivewere of low impact, and the remaining finding was informational
in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Y2K
Finance’s benefit in the Discussion section (4) at the end of the document.

Zellic 5 Y2K Finance

Breakdown of Finding Impacts

Impact Level Count

Critical 1

High 3

Medium 4

Low 5

Informational 1

CritHigh

Medium
Low

Info

Zellic 6 Y2K Finance

2 Introduction

2.1 About Y2K Finance

Y2K Finance is an binary option protocol designed to create amarketplace for tail risks
in DeFi, including pegged assets, directionalmarkets, and real-world events that could
pose a risk to the DeFi ecosystem. Market participants have the ability to robustly
hedge or speculate on the risk of a particular market.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security
auditing including both automated testing and manual review. These processes can
vary significantly per engagement, but the majority of the time is spent on a thorough
manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses
primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. Depending on the engagement, we may also employ sophisticated
analyzers such as model checkers, theorem provers, fuzzers, and so on as necessary.
We also perform a cursory review of the code to familiarize ourselves with the
contracts.

Business logic errors. Business logic is the heart of any smart contract application. We
examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like
unrealistic tokenomics or dangerous arbitrage opportunities. To the best of our
abilities, time permitting, we also review the contract logic to ensure that the
code implements the expected functionality as specified in the platform’s design
documents.

Integration risks. Several well-known exploits have not been the result of any bug
within the contract itself; rather, they are an unintended consequence of the contract’s
interaction with the broader DeFi ecosystem. Time permitting, we review external
interactions and summarize the associated risks: for example, flash loan attacks,
oracle price manipulation, MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general.

Zellic 7 Y2K Finance

We look for violations of industry best practices and guidelines and code quality
standards. We also provide suggestions for possible optimizations, such as gas
optimization, upgradeability weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact. Instead, we
assign it on a case-by-case basis based on our judgment and experience. Both the
severity and likelihood of an issue affect its impact. For instance, a highly severe issue’s
impact may be attenuated by a low likelihood. We assign the following impact ratings
(ordered by importance): Critical, High, Medium, Low, and Informational.

Zellic organizes its reports such that the most important findings come first in the
document, rather than being strictly ordered on impact alone. Thus, we may
sometimes emphasize an “Informational” finding higher than a “Low” finding. The key
distinction is that although certain findings may have the same impact rating, their
importancemay differ. This varies based on various soft factors, like our clients’ threat
models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of
security issues at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security
impact or are not directly related to the scoped contracts itself. These observations
— found in the Discussion (4) section of the document — may include suggestions for
improving the codebase, or general recommendations, but do not necessarily convey
that we suggest a code change.

2.3 Scope

The engagement involved a review of the following targets:

Y2K Finance Contracts

Repositories https://github.com/Y2K-Finance/earthquake-xchain
https://github.com/Y2K-Finance/strategy-vaults/

Versions earthquake-xchain: 8dda65630e55c1b8eba7d134c77835d352d9343a
strategy-vaults: 2031cc8e3660bab0b2daf86f50111c1aa8b1e5e7

Zellic 8 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain
https://github.com/Y2K-Finance/strategy-vaults/

Programs bridgeController.sol
swapController.sol
vaultController.sol
curve.sol
uniswapV2.sol
uniswapV2Dest.sol
uniswapV3.sol
uniswapV3Dest.sol
zapDest.sol
zapFrom.sol
ERC4626.sol
QueueContract.sol
StrategyVault.sol
HookChecker.sol
PositionSizer.sol
VaultGetter.sol
HookAave.sol
SwapRouter.sol
HookAaveFixYield.sol

Type Solidity

Platform EVM-compatible

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of four person-weeks. The assessment was conducted over the course of four
calendar weeks.

Contact Information

The following project manager was associated with the engagement:

Chad McDonald, Engagement Manager
chad@zellic.io

The following consultants were engaged to conduct the assessment:

Katerina Belotskaia, Engineer
kate@zellic.io

Nipun Gupta, Engineer
nipun@zellic.io

Zellic 9 Y2K Finance

mailto:chad@zellic.io
mailto:kate@zellic.io
mailto:nipun@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

August 16, 2023 Kick-off call
August 16, 2023 Start of primary review period
September 4, 2023 End of primary review period
September 8, 2023 Draft report delivered

Zellic 10 Y2K Finance

3 Detailed Findings

3.1 Emissions can be claimed multiple times

• Target: StrategyVault
• Category: Business Logic
• Likelihood: High

• Severity: Critical
• Impact: Critical

Description

The function claimEmissions can be used by users to claim Y2K emissions. This func-
tion uses the correct vault balance of users to calculate the accumulated emissions
and then subtracts the emission debt to find out the amount of emission tokens to be
transferred to the users.

function claimEmissions(address receiver)
external returns (uint256 emissions)

{
int256 accEmissions = int256(

(balanceOf[msg.sender] * accEmissionPerShare) / PRECISION
);
emissions = uint256(accEmissions - userEmissionDebt[msg.sender]);
userEmissionDebt[msg.sender] = accEmissions;
if (emissions > 0) emissionToken.safeTransfer(receiver, emissions);
emit EmissionsClaimed(msg.sender, receiver, emissions);

}

A user can also transfer their vault tokens to another account after calling claimEmis
sions. As the emission debt is not transferred along with the vault balance, they can
call claimEmissions again using their other account and claim these emissions again.

This process can be repeated multiple times, effectively draining all the emission to-
kens from the StrategyVault contract.

Impact

All the emission tokens can be drained out of the contract.

Zellic 11 Y2K Finance

Recommendations

While transferring tokens using the functions transfer and transferFrom, it is impor-
tant to update the userEmissionDebt mapping using the function _updateUserEmissio
ns.

To do this, override the _transfer function, which is called in both transfer and tran
sferFrom functions, to add the following additional logic.

function _transfer(address sender, address recipient, uint256 amount)
internal virtual override {

_updateUserEmissions(sender,amount,false);
_updateUserEmissions(recipient,amount,true);
super._transfer(sender, recipient, amount);

}

Remediation

The issue was fixed in commit dd5470d and 7a57688.

Zellic 12 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/dd5470d4c62d07166c8943c16f99f2e575fb7320
https://github.com/Y2K-Finance/strategy-vaults/commit/7a57688e7f70370f3edb0bfc3b2a66e539fa962b

3.2 The value of queuedWithdrawalTvl can be artificially inflated

• Target: StrategyVault
• Category: Business Logic
• Likelihood: High

• Severity: High
• Impact: High

Description

The value of queuedWithdrawalTvl can be artificially inflated, which might revert the
transactions calling fetchDeployAmounts or deployPosition in StrategyVault and _borr
ow in the HookAaveFixYield and HookAave contracts.

When a user calls requestWithdrawal, the value of totalQueuedShares[deployId] is
increased by the amount of shares. The user can then transfer their funds to another
wallet and call requestWithdrawal again, which would increase the totalQueuedShare
s[deployId] for the second time.

This can be repeated multiple times to artificially increase the value of totalQueuedSh
ares[deployId]. When the owner closes this position using closePosition, this value
will be added to queuedWithdrawalTvl, thus increasing its value more than intended.

If the value of queuedWithdrawalTvl becomes greater than totalAssets() after a suc-
cessful exploit, it will revert the function call fetchDeployAmounts and deployPosition
in the StrategyVault contract due to integer underflow. This would also revert any call
to availableUnderlying, which is called in _borrow in the hook contract.

Impact

Certain function calls would revert, and new positions cannot be deployed.

Recommendations

When a user requests withdrawal using the requestWithdrawal, these funds should
not be allowed to be transferred to other wallets.

An additional check can be implemented in the _transfer function that checks that no
more than balanceOf[sender] - withdrawQueue[sender].shares are transferred from
the sender’s address.

function _transfer(address sender, address recipient, uint256 amount)
internal virtual override {

require(balanceOf[sender] - withdrawQueue[sender].shares >
amount,”Not enough funds”);

Zellic 13 Y2K Finance

_updateUserEmissions(sender,amount,false);
_updateUserEmissions(recipient,amount,true);
super._transfer(sender, recipient, amount);

}

Remediation

The issue was fixed in commit 11f6797.

Zellic 14 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/11f6797a65de658fa95fe79e931a6f3b353449f4

3.3 The lack of token addresses’ verification

• Target: zapFrom
• Category: Coding Mistakes
• Likelihood: Low

• Severity: High
• Impact: High

Description

The permitSwapAndBridge and swapAndBridge functions allow users to perform the
swap, and after that, bridge the resulting tokens to another chain using Stargate, which
is a decentralised bridge and exchange building on top of the Layer Zero protocol.

These functions have the following parameters: swapPayload, receivedToken, and _s
rcPoolId. The swapPayload parameter contains all the necessary data for the swap,
including the path array with the list of tokens involved in the swap process. It is
assumed that the final address of the token participating in the swap will be used for
cross-chain swap.

The receivedToken token address will be used by the _bridge function for assigning
the approval for the stargateRouter contract.

Besides that, the user controls the _srcPoolId parameter, which determines the pool
address, which is associatedwith a specific token andwill hold the assets of the tokens
thatwill be transferred from the current contact inside stargateRouter. However, there
is no verification that these three addresses – receivedToken, the last address in path
and pool.token() – match each other.

When using native tokens, the user should pass the wethAddress address as received
Token because before _bridge, the necessary amount of tokens should be withdrawn
from theweth contract. After that, the receivedTokenwill be rewritten to zero address.
Currently there is no verification that the receivedToken is not zero initially.

function swapAndBridge(
uint amountIn,
address fromToken,
address receivedToken,
uint16 srcPoolId,
uint16 dstPoolId,
bytes1 dexId,
bytes calldata swapPayload,
bytes calldata bridgePayload

) external payable {
_checkConditions(amountIn);

Zellic 15 Y2K Finance

ERC20(fromToken).safeTransferFrom(msg.sender, address(this),
amountIn);

uint256 receivedAmount;
if (dexId !) 0x05) {

receivedAmount = _swap(dexId, amountIn, swapPayload);
} else {

ERC20(fromToken).safeApprove(balancerVault, amountIn);
receivedAmount = _swapBalancer(swapPayload);

}

if (receivedToken =) wethAddress) {
WETH(wethAddress).withdraw(receivedAmount);
receivedToken = address(0);

}

_bridge(
receivedAmount,
receivedToken,
srcPoolId,
dstPoolId,
bridgePayload

);
}

function _bridge(
uint amountIn,
address fromToken,
uint16 srcPoolId,
uint16 dstPoolId,
bytes calldata payload

) private {
if (fromToken =) address(0)) {

/) NOTE: If sending after swap to ETH then msg.value will be < amountIn as
it only contains the fee
If sending without swap msg.value will be > amountIn as it contains
both fee + amountIn

**/
uint256 msgValue = msg.value > amountIn

? msg.value
: amountIn + msg.value;

Zellic 16 Y2K Finance

IStargateRouter(stargateRouterEth).swapETHAndCall{value:
msgValue}(...)));
...))
}

...))
}

Impact

Due to the lack of verification that the receivedToken address matches the last ad-
dress in the path array and pool.token() address, users are able to employ any token
address as the receivedToken. This potentially allows them to successfully execute
cross-chain swaps using tokens owned by the contract.

In instances where a user initially sets the receivedToken address to the zero address,
the required amount of tokens will not be withdrawn from the weth contract. Conse-
quently, the contract will attempt to transfer to the stargateRouter contract the funds
present in its balance before the transaction took place.

In both scenarios, if the contract possesses any tokens, they can be utilized instead of
the tokens received during the execution of the swap.

This also leads to a problem in the _bridge function during msgValue calculation. When
the fromToken (receivedToken from swapAndBridge) is not the outcome of a swap, users
can specify any amountIn as the result of a swap involving a different token. This am
ountIn value will then be used as the ETH value. Consequently, if the contract holds
other funds, they will be sent to stargateRouterEth along with the user’s fee.

Recommendations

We recommend to add the check that the receivedToken and the last address in path
and pool.token()match each other — and also that the receivedToken address is not
equal to zero address.

Remediation

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit 5f79149.

Zellic 17 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/5f79149

3.4 The lack of verification of the payload data

• Target: zapFrom
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

Within the functions bridge, permitSwapAndBridge, and swapAndBridge, there is a lack
of validation for the payload or bridgePayload data provided by users, which is trans-
mitted to the stargateRouter contract for subsequent transmission to the destination
chain.

The sgReceive function expects that _payload will include the receiver address, the
vault’s epoch id, and the vaultAddress. However, if the data type mismatches the
expected format, the refund process using the _stageRefund function will not occur
as the function call will result in a revert.

function sgReceive(
uint16 _chainId,
bytes memory _srcAddress,
uint256 _nonce,
address _token,
uint256 amountLD,
bytes calldata _payload

) external payable override {
if (msg.sender !) stargateRelayer &) msg.sender !) stargateRelayerEth)

revert InvalidCaller();
(address receiver, uint256 id, address vaultAddress) = abi.decode(

_payload,
(address, uint256, address)

);

if (id =) 0) return _stageRefund(receiver, _token, amountLD);
if (whitelistedVault[vaultAddress] !) 1)

return _stageRefund(receiver, _token, amountLD);
bool success = _depositToVault(id, amountLD, _token, vaultAddress);
if (!success) return _stageRefund(receiver, _token, amountLD);

receiverToVaultToIdToAmount[receiver][vaultAddress][id] += amountLD;
emit ReceivedDeposit(_token, address(this), amountLD);

}

Zellic 18 Y2K Finance

Impact

The absence of proper payload validation exposes the system to potential issues, as
incorrect or malformed payloads could cause the subsequent sgReceive function call
from the zapDest contract to revert. Such reverts could lead to locked funds and
hinder the expected behavior of the system.

Recommendations

Instead of accepting raw payload data from users, we recommend encoding the pay-
load data directly inside the functions bridge, permitSwapAndBridge, and swapAndBrid
ge. This ensures that the payload is created according to the expected format and
reduces the likelihood of incorrect payloads causing reverts of calls in the destination
contract.

If the payload must be provided by users, we recommend to implement robust input
validation mechanisms to ensure that only valid and properly formatted payloads are
accepted.

Remediation

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit 56a1461.

Zellic 19 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/56a1461

3.5 Incorrect loop implementation in the function clearQueued
Deposits

• Target: StrategyVault
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

The function clearQueuedDeposits is used to clear a fixed amount of deposits in the
queue. This function loops through the queueDeposits mapping and pops the last el-
ement of the array while minting shares to the expected receivers in that mapping.

The issue is that the array indexing used to access queueDeposits is incorrect because
the array index will be out of bound in many cases. Shown below is the relevant part
of the code:

function clearQueuedDeposits(
uint256 queueSize

) external onlyOwner returns (uint256 pulledAmount) {
/)...))
for (uint256 i = depositLength - queueSize; i < queueSize;) {

QueueDeposit memory qDeposit = queueDeposits[queueSize - i - 1];
uint256 shares = qDeposit.assets.mulDivDown(

cachedSupply,
cachedAssets

);

Impact

In many cases the function might revert.

Recommendations

Consider changing the code to the following:

function clearQueuedDeposits(
uint256 queueSize

) external onlyOwner returns (uint256 pulledAmount) {
/)...))
for (uint256 i = depositLength; i > depositLength - queueSize;) {

Zellic 20 Y2K Finance

QueueDeposit memory qDeposit = queueDeposits[i - 1];
/)...))
unchecked {

i-);
}

Remediation

The issue was fixed in commit cf415dd.

Zellic 21 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/cf415dd

3.6 Lack of data validation for trustedRemoteLookup

• Target: zapDest
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Informational
• Impact: Informational

Description

The current implementation of the lzReceive function lacks checks to verify the va-
lidity of the data stored in trustedRemoteLookup[_srcChainId] and _srcAddress bytes.

If trustedRemoteLookup[_srcChainId] is not set and _srcAddress is zero bytes, the re-
sult of the check if (keccak256(_srcAddress) !) keccak256(trustedRemoteLookup[_s
rcChainId]))will be true because keccak256(“”) =) keccak256(“”).

function lzReceive(
uint16 _srcChainId,
bytes memory _srcAddress,
uint64 _nonce,
bytes memory _payload

) external override {
if (msg.sender !) layerZeroRelayer) revert InvalidCaller();
if (

keccak256(_srcAddress) !)
keccak256(trustedRemoteLookup[_srcChainId])

) revert InvalidCaller();
...))

}

Impact

The issue currently has no security impact, because it is not expected that the layerZe-
roRelayer contract will send an empty _srcAddress. But limiting a contract’s attack
surface is a crucial way to mitigate future risks.

Recommendations

To ensure data consistency and avoid potential issues, it is recommended to add the
following checks:

• trustedRemoteLookup[_srcChainId] > 0

Zellic 22 Y2K Finance

• _srcAddress.length =) trustedRemoteLookup[_srcChainId].length

Anexample of such checks can be found in the implementation providedby LayerZero
Labs here.

Remediation

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit 32eaca8.

Zellic 23 Y2K Finance

https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/LzApp.sol#L41
https://github.com/Y2K-Finance/earthquake-xchain/commit/32eaca8

3.7 Array out-of-bound exception in _removeVaults

• Target: StrategyVault
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

The function _removeVaults is a helper function that removes vaults from the vaultLi
st. While removing a vault from the middle of the array, it is intended to replace the
vault at the last index with the vault to be removed and pop the last vault.

The index of the last element of the array should be removeCount - 1 (where removeCo
unt = vaults.length), but the function is using the last element as removeCount— due
to which it will revert because it would access element out-of-bounds of the array.

Shown below is the relevant part of the code:

function _removeVaults(
address[] memory vaults

) internal returns (address[] memory newVaultList) {
/)...))
} else {

if (vaults.length > 1) {
vaults[j] = vaults[removeCount];
delete vaults[removeCount];

} else delete vaults[j];
removeCount-);

}
/)...))

Impact

The _removeVaults function would revert in certain cases.

Recommendations

Use the correct last array index removeCount - 1 instead of removeCount:

function _removeVaults(
address[] memory vaults

Zellic 24 Y2K Finance

) internal returns (address[] memory newVaultList) {
/)...))
} else {

if (vaults.length > 1) {
vaults[j] = vaults[removeCount];
delete vaults[removeCount];
vaults[j] = vaults[removeCount - 1];
delete vaults[removeCount - 1];

} else delete vaults[j];
removeCount-);
}
/)...))

Remediation

The issue was fixed in commit fd2a6f3.

Zellic 25 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/fd2a6f34fd00790f2e1aec0631c66da264d6fa53

3.8 The function _removeVaults returns early

• Target: StrategyVault
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Low
• Impact: Low

Description

The function _removeVaults is a helper function that removes vaults from the vaultL
ist. While removing the vaults, it runs two loops, but the return statement is inside
the first loop, due to which this function returns after the first iteration of the first loop.
The intended functionality is to return after both the loops are finished.

Impact

The _removeVaults function would return early, and all the vaults will not be removed
from the list as intended.

Recommendations

Move the two lines outside of the loop:

function _removeVaults(
address[] memory vaults

) internal returns (address[] memory newVaultList) {
uint256 removeCount = vaults.length;
newVaultList = vaultList;

for (uint256 i; i < newVaultList.length;) {
for (uint j; j < removeCount;) {

if (vaults[j] =) newVaultList[i]) {
/) Deleting the removeVault from the list
if (j =) removeCount) {

delete vaults[j];
removeCount-);

} else {
if (vaults.length > 1) {

vaults[j] = vaults[removeCount];
delete vaults[removeCount];

} else delete vaults[j];
removeCount-);

}

Zellic 26 Y2K Finance

/) Deleting the vault from the newVaultList list
if (

newVaultList[i]
=) newVaultList[newVaultList.length - 1]

) {
delete newVaultList[i];

} else {
newVaultList[i]

= newVaultList[newVaultList.length - 1];
delete newVaultList[newVaultList.length - 1];

}
}
unchecked {

j+);
}

}
unchecked {

i+);
}

vaultList = newVaultList;
return newVaultList;

}
vaultList = newVaultList;
return newVaultList;

}

Remediation

The issue was fixed in commit 945734b and 6bd136c.

Zellic 27 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/945734bf2ad038f38264255df5c8bdb90aaf25d8
https://github.com/Y2K-Finance/strategy-vaults/commit/6bd136c2551844b7237327cbf9b8c3d194a567b2

3.9 The weightStrategy range violation

• Target: StrategyVault
• Category: Coding Mistakes
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

The weightStrategy global variable determines the weight strategy used when de-
ploying funds and can take one of three values:

1. for equal weight

2. for fixed weight

3. for threshold weight

However, the setWeightStrategy function allows the owner of the contract to set this
value to a number less than or equal to strategyCount(), which is equal to 4.

function setWeightStrategy(
uint8 weightId,
uint16 proportion,
uint256[] calldata fixedWeights

) external onlyOwner {
...))
if (weightId > strategyCount()) revert InvalidWeightId();
...))
weightStrategy = weightId;
weightProportion = proportion;
vaultWeights = fixedWeights;
emit WeightStrategyUpdated(weightId, proportion, fixedWeights);

}

function strategyCount() public pure returns (uint256) {
return 4;

}

Impact

If the weightStrategy is set to 4, the fetchWeights function will revert because there is
a check that this value cannot bemore than 3. As a result, the deployPosition function,

Zellic 28 Y2K Finance

which is called by the owner of the contract, will also revert, preventing the owner
from deploying funds to Y2K vaults.

Recommendations

We recommend to change the condition from > to >).

function setWeightStrategy(
uint8 weightId,
uint16 proportion,
uint256[] calldata fixedWeights

) external onlyOwner {
...))
if (weightId > strategyCount()) revert InvalidWeightId();
if (weightId >) strategyCount()) revert InvalidWeightId();
...))

}

Remediation

The issue was fixed in commit 2248d6f.

Zellic 29 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/2248d6fa0ed346a7db460d2d77037c5d66ebb4cb

3.10 Incompatibility with USDT token

• Target: VaultController
• Category: Business Logic
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

While depositing ERC-20 tokens to the vault, the contract first approves the token
to the vault using safeApprove from the solmate library and then calls deposit on the
earthquake vault in a try-catch. The code is as follows:

function _depositToVault(
uint256 id,
uint256 amount,
address inputToken,
address vaultAddress

) internal returns (bool) {
if (inputToken =) sgEth) {

try
IEarthquake(vaultAddress).depositETH{value: amount}(

id,
address(this)

)
{} catch {

return false;
}

} else {
ERC20(inputToken).safeApprove(address(vaultAddress), amount);
try

IEarthquake(vaultAddress).deposit(id, amount,
address(this))

{} catch {
return false;

}
}
return true;

}

If the call to deposit on the earthquake vault fails, it would be caught using the catch
statement and the functionwould simply return false. In this case, the approval would

Zellic 30 Y2K Finance

not be decreased as the tokenswould not be transferred to the earthquake vault. If this
token is USDT, subsequent calls to safeApprovewill revert, as USDT’s approve function
reverts if the current allowance is nonzero.

Impact

USDT deposits to the earthquake vault might fail in case any deposit to the vault fails.

Recommendations

Consider changing the code to the following:

function _depositToVault(
uint256 id,
uint256 amount,
address inputToken,
address vaultAddress

) internal returns (bool) {
if (inputToken =) sgEth) {

try
IEarthquake(vaultAddress).depositETH{value: amount}(

id,
address(this)

)
{} catch {

return false;
}

} else {
ERC20(inputToken).safeApprove(address(vaultAddress), 0);

ERC20(inputToken).safeApprove(address(vaultAddress), amount);
try

IEarthquake(vaultAddress).deposit(id, amount,
address(this))

{} catch {
return false;

}
}
return true;

}

Zellic 31 Y2K Finance

Remediation

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit d17e221.

Zellic 32 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/d17e221

3.11 Conversion between different units does not account for
token decimals

• Target: HookAave, HookAaveFixYield
• Category: Business Logic
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

The functions _borrow and _repay in the hook contracts are used to borrow and repay
to Aave.

Taking an example of _repay, this function calculates the amount to be repaid using
balanceOf on the variable debt token as well as the current balance of borrow tokens
using balanceOf on the borrow token.

If the amount to be repaid is greater than the current balance of borrow tokens, the
function _swapForMissingBorrowToken withdraws the deposit token and swaps these
tokens to borrow tokens to repay the amount to Aave.

The amount to be withdrawn is calculated by the following code:

function _swapForMissingBorrowToken(
address borrowToken,
uint256 amountNeeded

) internal {
ERC20 depositToken = strategyDepositToken;
uint256 exchangeRate = (aaveOracle.getAssetPrice(borrowToken) *

105e16) / aaveOracle.getAssetPrice(address(depositToken));
uint256 amountToWithdraw = ((exchangeRate * amountNeeded) / 1e18);

_withdraw(amountToWithdraw, false);
_swap(amountToWithdraw, depositToken, 1);

}

Although this would work if both tokens are of the same decimals, there would be an
issue if these tokens (depositToken and borrowToken) are of different decimals.

For example, if borrowToken is ETH and depositToken is USDC, and the amountNeeded
is 100 ETH, assuming the price of ETH to be $1,200, the value of amountToWithdraw
would be calculated as 126,000e18 whereas it should be 126,000e6.

The same issue is also present in the _repay function.

Zellic 33 Y2K Finance

Impact

Incorrect decimal conversion might lead to incorrect values during _borrow and _rep
ay.

Recommendations

Take into account the decimals for all the tokens while such conversions take place.

Remediation

The issue was fixed in commits 80da566 and 0db93f7.

Zellic 34 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/80da566
https://github.com/Y2K-Finance/strategy-vaults/commit/0db93f7

3.12 Malicious users can profit due to temporary exchange rate
fluctuations

• Target: StrategyVault
• Category: Business Logic
• Likelihood: Low

• Severity: Medium
• Impact: Medium

Description

When a position is closed by calling closePosition, the deposit queue is cleared by
pulling funds from the queue contract using the function _pullQueuedDeposits. The
function _pullQueuedDeposits is only called when the length of queueDeposits is less
than maxQueuePull.

If the length of this queueDeposits array is greater than maxQueuePull, the queue is
first reduced using the function clearQueuedDeposits. The relevant part of the code is
shown below:

function closePosition() external onlyOwner {
if (!fundsDeployed) revert FundsNotDeployed();

/)...))
fundsDeployed = false;
/)...))
uint256 queueLength = queueDeposits.length;
if (queueLength > 0 &) queueLength < maxQueuePull)

_pullQueuedDeposits(queueLength);
}

There may be a scenario where either the owner forgets to call the clearQueuedDepos
its function before closePosition or a malicious user front-runs the owner’s closeP
osition call to increase the length of the queue such that _pullQueuedDeposits is not
called. In both these cases, the queue will not be cleared, but fundsDeployed would
be set to false.

If the owner later tries to clear the queue by calling the function clearQueuedDeposits
multiple times, the exchange rate would temporarily fluctuate. This is due to a bug in
the function clearQueuedDeposits.

While clearing part of the queue, the function pulls all the funds from the QueueCon-
tract. At this time, the totalSupply is only increased by a small amount, but totalAss
ets is increased by a large amount. The exchange rate would again reach back to the

Zellic 35 Y2K Finance

expected amount when the entire queue is cleared, but between the calls to clearQ
ueuedDeposits, the exchange rate is incorrect. A malicious user can profit by calling
withdraw between these calls as they would receive more assets than they should.

Impact

A malicious user can sell shares at higher price than expected.

Recommendations

In the function clearQueuedDeposits, only the assets that are removed from the queue
should be pulled from the QueueContract.

Remediation

The issue was fixed in commit 86e24fe.

Zellic 36 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/86e24fe126e522e5abfc60f983f9eca1a89be969

3.13 Incorrect weights calculation

• Target: PositionSizer
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

The function _thresholdWeight performs a calculation of weights for a set of vaults
based on their return on investment (ROI) compared to a threshold value. However,
during the process of identifying valid vaults, the validIds array is populatedwith both
valid indexes and zeros, which leads to unintended behavior.

The second loop iterates over this array to calculate weights only until validCount. But
validCount is less than the actual validIds size. So the weightswill be calculated only
for the first validCount elements from the validIds array, regardless of whether they
are valid indexes or zeros.

function _thresholdWeight(
address[] memory vaults,
uint256[] memory epochIds

) internal view returns (uint256[] memory weights) {
...))
for (uint256 i; i < vaults.length;) {

uint256 roi = _fetchReturn(vaults[i], epochIds[i], marketIds[i]);
if (roi > threshold) {

validCount += 1;
validIds[i] = i;

}
unchecked {

i+);
}

}
...))
uint256 modulo = 10_000 % validCount;
for (uint j; j < validCount;) {

uint256 location = validIds[j];
weights[location] = 10_000 / validCount;
if (modulo > 0) {

weights[location] += 1;
modulo -= 1;

}

Zellic 37 Y2K Finance

unchecked {
j+);

}
}

}

Impact

This behavior leads to missing weights calculations for a portion of the valid vaults.

Recommendations

We recommend correcting the second loop so that it iterates the entire length of the
validIds array and counts the weights only if the validIds[j] is not zero.

Remediation

The issue was fixed in commit d9ee9d3.

Zellic 38 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/d9ee9d349ff433cb8d13b4433ebd4437ca8b2b17

3.14 Incorrect return value in fetchEpochIds in case of invalid
vaults

• Target: VaultGetter
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Low

Description

The function fetchEpochIds is used to get the list of epochIds, validVaults, and vault
Type for the vaults that are active.

The function loops through the vault’s array, calls the function epochValid for each
array, and returns the epochId, vaultType, and a boolean valid that describes if the
vault is valid or not. When a vault is invalid — in other words, valid = false — the
counter i is increased but the validCount is not. If any vault is invalid, there would be
a mismatch between the returned arrays.

function fetchEpochIds(
address[] memory vaults

)
public
view
returns (

uint256[] memory epochIds,
address[] memory validVaults,
uint256[] memory vaultType

)
{

uint256 validCount;
epochIds = new uint256[](vaults.length);
validVaults = new address[](vaults.length);
vaultType = new uint256[](vaults.length);

for (uint256 i = 0; i < vaults.length;) {
IEarthquake vault = IEarthquake(vaults[i]);

bool valid;
(valid, epochIds[i], vaultType[i]) = epochValid(vault);
unchecked {

i+);

Zellic 39 Y2K Finance

}

if (!valid) {
continue;

}

validVaults[validCount] = address(vault);
unchecked {

validCount+);
}

}
}

Impact

If the weightStrategy used is 3 (threshold), the function _thresholdWeightwould revert
in VaultGetter.getRoi as this function would try to call totalSupply on an address(
0). The function _thresholdWeight is internally called in deployPosition; therefore,
deploying new positions might fail.

Recommendations

Revert the function fetchEpochIds if a vault in the list is invalid.

Remediation

The issue was fixed in commit 8e8d33e.

Zellic 40 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/8e8d33eb2bd5e66fc703b804b4d01ed02cae7f86

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment. These discussion notes are not necessarily security related
and do not convey that we are suggesting a code change.

4.1 Variable naming suggestion

The contract zapDest is the cross-chain bridge receiver for Y2K vaults that implements
the function lzReceive. The LayerZero Endpoint will invoke this function to deliver the
message on the destination. In this contract, the global variable layerZeroRelayer is
used to store the address of the LayerZero Endpoint that will call this function. We
suggest to rename this variable as layerZeroEndpoint to avoid confusion.

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit 8b8d6ad7.

4.2 Documentation contains additional parameter that is not
included in the code

The definition of payload in the comments suggests that it contains another encoded
parameter named depositType, but this parameter is not included in the code. We
suggest to update the documentation to reflect the definition of payload the same as
what is being used in the code.

4.3 The function _swapUniswapV2 can be rewritten as it only ex-
pects one token swap

The _swapUniswapV2 function in uniswapV2Dest is used to swap one token for another
using Uniswap V2 pools. The current implementation of this function is almost iden-
tical to the _swapUniswapV2 defined in uniswapV2.

While the function in uniswapV2 was designed to swap multiple tokens, the function
in uniswapV2Dest is just expected to swap one. Though there are no security con-
cerns here, we suggest to simplify the current implementation of _swapUniswapV2 in
uniswapV2Dest to avoid complexity.

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit 859022b.

Zellic 41 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/8b8d6ad709930ff60dcf968ea289a1703d006a26
https://github.com/Y2K-Finance/earthquake-xchain/commit/859022b

4.4 LayerZero configuration

We recommend implementing a set of functions that enable the configuration of a
generic LayerZero user application in both the ZapFrom and ZapDest contracts.

/) @notice set the send() LayerZero messaging library version to _version
/) @param _version - new messaging library version
function setSendVersion(uint16 _version) external override onlyOwner {

lzEndpoint.setSendVersion(_version);
}

/) @notice set the lzReceive() LayerZero messaging library version to
_version

/) @param _version - new messaging library version
function setReceiveVersion(uint16 _version) external override onlyOwner {

lzEndpoint.setReceiveVersion(_version);
}

/) @notice Only when the UA needs to resume the message flow in blocking
mode and clear the stored payload

/) @param _srcChainId - the chainId of the source chain
/) @param _srcAddress - the contract address of the source contract at the

source chain
function forceResumeReceive(uint16 _srcChainId,

bytes calldata _srcAddress) external override onlyOwner {
lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress);

function getConfig(
uint16 _version,
uint16 _chainId,
address,
uint _configType

) external view returns (bytes memory) {
return lzEndpoint.getConfig(_version, _chainId, address(this),
_configType);

}

/) @notice set the configuration of the LayerZero messaging library of the
specified version

/) @param _version - messaging library version
/) @param _chainId - the chainId for the pending config change

Zellic 42 Y2K Finance

/) @param _configType - type of configuration. every messaging library
has its own convention.

/) @param _config - configuration in the bytes. can encode arbitrary
content.

function setConfig(
uint16 _version,
uint16 _chainId,
uint _configType,
bytes calldata _config

) external override onlyOwner {
lzEndpoint.setConfig(_version, _chainId, _configType, _config);

}

This issue has been acknowledged by Y2K Finance, and fixes were implemented in
the following commits:

• 37187ae1

• c0df7ed0

4.5 Use Non-blocking pattern instead of blocking pattern in
lzReceive

LayerZero provides ordered delivery of messages from a given sender to a destination
chain, i.e. srcUA-> dstChain. Therefore, when a transaction fails on the destination
chain (eg: if lzReceive reverts for some reason), the channel between the source and
destination is blocked.

If it isn’t necessary to preserve the sequential nonce property then the non-
blocking pattern should be used. An example implementation of non-blocking
pattern by LayerZero is here: https://github.com/LayerZero-Labs/solidity-
examples/blob/main/contracts/lzApp/NonblockingLzApp.sol

This issue has been acknowledged by Y2K Finance, and a fix was implemented in
commit c0df7ed0.

4.6 Use reentrancy guards in deposit and withdraw functions

While our examination of the contracts did not reveal any instances of reentrancy
scenarios, we strongly advise the implementation of reentrancy guards as a precau-
tionary measure. The following functions lack protection against reentrancy:

Zellic 43 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/37187ae1782ac30527bfaf44867899c620dac780
https://github.com/Y2K-Finance/earthquake-xchain/commit/c0df7ed0c2757e0f9c8c78f2e8af43128537d2d5
https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/NonblockingLzApp.sol
https://github.com/LayerZero-Labs/solidity-examples/blob/main/contracts/lzApp/NonblockingLzApp.sol
https://github.com/Y2K-Finance/earthquake-xchain/commit/c0df7ed0c2757e0f9c8c78f2e8af43128537d2d5

• ZapFrom: The swapAndBridge, permitSwapAndBridge functions.

• ZapDest: The withdraw function.

• StrategyVault: The deposit, withdraw, claimEmissions and withdrawFromQueue
function.

This recommendation is based on the potential for certain tokens to incorporate call-
backs during transfers, which can introduce vulnerabilities if not adequately safe-
guarded against.

The issue was fixed in commit 46d5cba.

Zellic 44 Y2K Finance

https://github.com/Y2K-Finance/strategy-vaults/commit/46d5cba

5 Threat Model

This provides a full threat model description for various functions. As time permit-
ted, we analyzed each function in the contracts and created a written threat model
for some critical functions. A threat model documents a given function’s externally
controllable inputs and how an attacker could leverage each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat
model in this section does not necessarily suggest that a function is safe.

Please note that our threat model was based on commits 8dda6563 and
2031cc8e, which represents a specific snapshot of the codebase. Therefore, it’s
important to understand that the absence of certain tests in our report may not
reflect the current state of the test suite.

During the remediation phase, Y2K Finance took proactive steps to address the
findings by adding test cases where applicable in commit 761d1cb4. This demon-
strates their dedication to enhancing the code quality and overall reliability of the
system, which is commendable.

5.1 Module: ERC4626.sol

Function: deposit(uint256 assets, address receiver)

This deposits assets to mint shares in the contract.

Inputs

• assets
– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount of assets to deposit.
• receiver

– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The address to receive the minted shares.

Zellic 45 Y2K Finance

https://github.com/Y2K-Finance/earthquake-xchain/commit/8dda65630e55c1b8eba7d134c77835d352d9343a
https://github.com/Y2K-Finance/strategy-vaults/commit/2031cc8e3660bab0b2daf86f50111c1aa8b1e5e7
https://github.com/Y2K-Finance/strategy-vaults/commit/761d1cb4cc9292c8d4ab4fd81b9ec26c497af538

Branches and code coverage (including function calls)

Intended branches

• The function calculates the preview deposit amount from assets and ensures it
is not zero.

4□ Test coverage
• The function transfers the assets from the caller to the contract.

4□ Test coverage
• The function mints shares for the receiver.

4□ Test coverage
• The function emits a Deposit event.

4□ Test coverage
• The function calls afterDeposit to perform any necessary postdeposit actions.

4□ Test coverage

Negative behavior

• The function reverts with ZERO_SHARES if the calculated shares are zero.
□ Negative test

Function call analysis

• asset.safeTransferFrom(msg.sender, address(this), assets)
– What is controllable? msg.sender and assets.
– If return value controllable, how is it used and how can it go wrong? This
function call does not return a value.

– What happens if it reverts, reenters, or does other unusual control flow? If
the asset transfer fails, it will revert and the transaction will be rolled back.

• _mint(receiver, shares)
– What is controllable? receiver and shares.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If the minting of shares fails, it will revert and the transaction will be rolled
back.

• afterDeposit(assets, shares)
– What is controllable? assets and shares.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If the afterDeposit function reverts, the entire function would revert.

Zellic 46 Y2K Finance

Function: withdraw(uint256 shares, address receiver, address owner)

Withdraws assets by burning shares and transferring assets to the receiver

Inputs

• shares
– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount of shares to burn for withdrawal.
• receiver

– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The address to receive the withdrawn assets.
• owner

– Control: Fully controlled.

– Constraints: Owner should either be the caller of the function or should
have enough allowance

– Impact: The owner of the shares.

Branches and code coverage (including function calls)

Intended branches

• The function calculates the assets to be withdrawn based on shares.
4□ Test coverage

• If the sender is not the owner, it updates the allowance for the sender to spend
the owner’s shares.

4□ Test coverage
• The function calls beforeWithdraw to perform any necessary prewithdraw ac-
tions.

4□ Test coverage
• The function burns the specified shares from the owner’s balance.

4□ Test coverage
• The function emits a Withdraw event.

4□ Test coverage
• The function transfers assets to the receiver.

4□ Test coverage

Negative behavior

• The function reverts if the sender tries to withdraw more shares than allowed

Zellic 47 Y2K Finance

by their allowance.
□ Negative test

Function call analysis

• beforeWithdraw(assets, shares)
– What is controllable? assets and shares.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If the beforeWithdraw reverts, the entire function would revert.

• _burn(owner, shares)
– What is controllable? owner and shares.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If the burning of shares fails, it will revert and the transaction will be rolled
back.

• asset.safeTransfer(receiver, assets)
– What is controllable? receiver and assets.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow? If
the asset transfer fails, it will revert and the transaction will be rolled back.

5.2 Module: HookAaveFixYield.sol

Function: updateWeeklyAppreciation(uint256 newAppreciation)

This updates the weekly appreciation — in other words, the proportion of position to
use.

Inputs

• newAppreciation
– Control: Fully controlled.

– Constraints: Should be greater than zero and less than or equal to 1e12.

– Impact: The new fixed amount.

Branches and code coverage (including function calls)

Intended branches

• Updates the weeklyAppreciationwith the provided newAppreciation.

Zellic 48 Y2K Finance

4□ Test coverage

Negative behavior

• The function reverts if newAppreciation is zero.
4□ Negative test

• The function reverts if newAppreciation is greater than 1e12.
4□ Negative test

5.3 Module: HookAave.sol

Function: afterClose()

This repays the loan and swaps the excess to aTokens.

Branches and code coverage (including function calls)

Intended branches

• Repays the loan by calling _repay(borrowToken).
4□ Test coverage

• Checks for excess tokens and swaps them to deposit tokens.
4□ Test coverage

• Transfers any remaining excess tokens to the strategy contract.
4□ Test coverage

Negative behavior

• The function reverts if the caller is an address other than the strategy contract.
□ Negative test

Function call analysis

• _repay(borrowToken)
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _swap(excess, borrowToken, 0)
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Zellic 49 Y2K Finance

• _supply(amountOut, false)
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: afterDeposit(uint256 amount)

This deposits the amount into Aave (from deposits in strategy vault).

Inputs

• amount
– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount to deposit.

Branches and code coverage (including function calls)

Intended branches

• Calls the _supply function with the provided amount and true as arguments.
4□ Test coverage

• Emits an AaveSupply event.
4□ Test coverage

Negative behavior

• The function reverts if the caller is an address other than strategy.
4□ Negative test

Function call analysis

• _supply(amount, true)
– What is controllable? amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: beforeDeploy()

This borrows the max amount from Aave and sends it to the strategyVault.

Zellic 50 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• The function calls _borrow() to borrow themax amount fromAave and transfers
the borrowed amount to msg.sender.

4□ Test coverage

Negative behavior

• The function reverts if _borrow() fails.
□ Negative test

• The function reverts if the caller is an address other than strategy.
□ Negative test

Function call analysis

• _borrow()
– What is controllable? No external control.

– If return value controllable, how is it used and how can it go wrong? The
return value is not controllable, but its impact is significant as it represents
the borrowed amount from Aave.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• strategyBorrowToken.safeTransfer(msg.sender, borrowAmount)
– What is controllable? msg.sender.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: beforeWithdraw(uint256 amount)

This withdraws the amount from Aave (from withdrawals in strategy vault).

Inputs

• amount
– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount to withdraw.

Zellic 51 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• Calls the _withdraw function with the provided amount and true as arguments.
4□ Test coverage

• Emits an AaveWithdraw event.
4□ Test coverage

Negative behavior

• The function reverts if the caller is an address other than strategy.
□ Negative test

Function call analysis

• _withdraw(amount, true)
– What is controllable? amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: setStrategyVault(address _strategy, address _borrowToken, add
ress _lpToken)

This sets the strategy vault info.

Inputs

• _strategy
– Control: Fully controlled.

– Constraints: Must not be the zero address.

– Impact: The address of the strategy vault.
• _borrowToken

– Control: Fully controlled.

– Constraints: Must not be the zero address.

– Impact: The address of the borrow token.
• _lpToken

– Control: Fully controlled.

– Constraints: Must not be the zero address.

– Impact: The address of the LP token.

Zellic 52 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• The global storage variables strategyInUse, strategyDepositToken, strategyBor
rowToken, and strategyLPToken are updated properly.

4□ Test coverage

Negative behavior

• The function reverts if _strategy, _borrowToken, or _lpToken is the zero address.
4□ Test coverage

Function call analysis

• ERC20 _depositToken = IStrategyVault(_strategy).asset();
– What is controllable? _strategy.
– If return value controllable, how is it used and how can it go wrong? The
return value is assigned to _depositToken, and its use is not controllable.
The function is used to retrieve the asset of the strategy vault.

– What happens if it reverts, reenters, or does other unusual control flow? If
this reverts, it indicates that _strategy is not a valid strategy vault contract.

Function: updatePath(IRouter.Path path, bool updatingAll)

This updates the path information used for swaps.

Inputs

• path
– Control: Fully controlled.

– Constraints: The toAmountMin fields in path.BToD and path.DToB must be
greater than zero.

– Impact: The new path info.
• updatingAll

– Control: Fully controlled.

– Constraints: No constraints.

– Impact: If true, it will update all path info; if false, it will only update toAmo
untMin and the updated timestamp.

Branches and code coverage (including function calls)

Intended branches

Zellic 53 Y2K Finance

• The function updates the path info — either all fields or just toAmountMin and
updated.

4□ Test coverage

Negative behavior

• The function reverts if toAmountMin fields in path.BToD or path.DToB are zero.
4□ Negative test

• The function reverts if updatingAll is true and the route info or token placement
is invalid.

4□ Negative test

5.4 Module: QueueContract.sol

Function: transferToQueue(address caller, uint256 amount)

This transfers asset from the caller to the QueueContract.

Inputs

• caller
– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The caller of the function.
• amount

– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount to transfer.

Branches and code coverage (including function calls)

Intended branches

• The function checks if the msg.sender has a valid asset and transfers the specified
amount.

4□ Test coverage
• The function emits a QueueDeposit event.

4□ Test coverage

Negative behavior

• The function reverts if the asset is address(0) or if the transferFrom operation
fails.

Zellic 54 Y2K Finance

4□ Negative test

Function call analysis

• asset.transferFrom(caller, address(this), amount)
– What is controllable? caller and amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: transferToStrategy()

This transfers assets from the QueueContract to the caller (strategyVault).

Branches and code coverage (including function calls)

Intended branches

• The function checks if the caller’s vault has a nonzero balance and transfers the
balance.

4□ Test coverage
• The function emits a DepositsCleared event.

4□ Test coverage

Negative behavior

• The function reverts if the vault balance is zero or if the transfer operation fails.
4□ Negative test

Function call analysis

• depositAsset[msg.sender].transfer(msg.sender, vaultBalance)
– What is controllable? msg.sender and vaultBalance.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

5.5 Module: StrategyVault.sol

Function: claimEmissions(address receiver)

This can be called to any state. If accEmissions is less than userEmissionDebt[msg.sen
der], the calculated emissions value can be a huge number as result of cast int256 to

Zellic 55 Y2K Finance

uint256.

Inputs

• receiver
– Constraints: No.

– Impact: The receiver of emissionToken.

Branches and code coverage (including function calls)

Intended branches

• claim before withdraw tokens
4□ Test coverage

• claim after withdraw tokens
4□ Test coverage

Function call analysis

• emissionToken.safeTransfer(receiver, emissions)
– What is controllable?: receiver

– If return value controllable, how is it used and how can it go wrong?: n/a

– What happens if it reverts, reenters, or does other unusual control flow?:
can revert if the balance of contract less than emissions value

Function: clearQueuedDeposits(uint256 queueSize)

The function allows the contract owner to clear the fixed amount of deposits in the
end of queue. Also it mints the appropriate amount of shares for receivers from queue
and transfer deposited tokens from QueueContract to this contract.

Inputs

• queueSize
– Constraints: No checks.

– Impact: The amount of elements of queueDepositswill be deleted.

Branches and code coverage (including function calls)

Intended branches

• The queueSize is equal to queueDeposits.length.
4□ Test coverage

Zellic 56 Y2K Finance

• queueSize is less than queueDeposits.length.
□ Test coverage

Negative behavior

• queueSize is more than queueDeposits.length.
□ Negative test

• queueSize is zero.
□ Negative test

Function call analysis

• _updateUserEmissions(qDeposit.receiver, shares, true)
– What is controllable? The qDeposit.receiver value from queueDeposits —

shares is calculated here.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _mint(qDeposit.receiver, shares);
– What is controllable? The qDeposit.receiver value from queueDeposits —

shares is calculated here.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• queueContract.transferToStrategy();
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
The function transfers full queue balance to the strategy, but it should only
transfer the pulledAmount.

• asset.safeApprove(address(hook.addr), pulledAmount);
– What is controllable? The pulledAmount value is calculated here — the full
amount of assets tokens cleared from queue. The hook.addr is set by the
owner of the contract.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem. The function is called if hook.command.shouldCallAft
erDeposit() =) true.

• hook.addr.afterDeposit(pulledAmount);
– What is controllable? The pulledAmount value is calculated here — the full
amount of assets tokens cleared from queue.

Zellic 57 Y2K Finance

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
hook.command.shouldCallAfterDeposit() =) true.

Function: closePosition()

The fundsDeployed should be true. After the call is set to false, deploymentId is in-
creased. This allows the owner of the contract to trigger close position and withdraw
funds from Y2K vaults.

Branches and code coverage (including function calls)

Negative behavior

• fundsDeployed is false.
4□ Negative test

• Second call after successful closing of position.
4□ Negative test

Function call analysis

• hook.addr.beforeClose();
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
This function is called if hook.command.shouldCallBeforeClose() =) true.
The hook.addr is controlled by the owner of the contract.

• _closePosition(position)
– What is controllable? Nothing controllable directly by caller; the position
data was filled during the deployPosition call.

– If return value controllable, how is it used and how can it go wrong? The
function returns nothing.

– What happens if it reverts, reenters, or does other unusual control flow?
Withdraws funds from vaults — can revert due to problems with with-
drawal in external contract.

• _transferAssets(hook.addr.afterCloseTransferAssets())
– What is controllable? Nothing controllable directly by the caller. The afte

rCloseTransferAssets function returns the list of tokens.
– If return value controllable, how is it used and how can it go wrong? The
function returns nothing.

– What happens if it reverts, reenters, or does other unusual control flow?
This function is called if hook.command.shouldTransferAfterClose() =) tru

Zellic 58 Y2K Finance

e. The function transfers asset tokens from the returned list to the receiver
(hook.addr). The current balance of contract passed as value argument to
the safeTransfer(IERC20 token, address to, uint256 value) function, so
there will not be a situation that there are not enough tokens to transfer.

• hook.addr.afterClose()
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? The
function returns nothing.

– What happens if it reverts, reenters, or does other unusual control flow?
This function is called if hook.command.shouldCallAfterClose() =) true.
The hook.addr is controlled by the owner of the contract.

• previewRedeem(totalQueuedShares[deploymentId])
– What is controllable? N/A.

– If return value controllable, how is it used and howcan it gowrong? Return
the amount of asset token for the corresponding amount of shares, which
are added to the queue for withdrawal for current depolyId. If totalQueu
edShares[deploymentId] is calculated incorrecly, the resulting asset value
also will be wrong.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _pullQueuedDeposits(queueLength)
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

Function: deployPosition()

The fundsDeployed should be false. After the call, fundsDeployed = true.

Branches and code coverage (including function calls)

Negative behavior

• The fundsDeployed is true.
4□ Negative test

• Second call after successful deploy of position
4□ Negative test

Function call analysis

• hook.addr.beforeDeploy()

Zellic 59 Y2K Finance

– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
This function is called if hook.command.shouldCallBeforeDeploy() =) tru
e. In the case of the HookAave contract, this function borrows the max
amount from Aave and sends it to the strategyVault. It can revert if the
strategyBorrowToken balace of the hook.addr contract is less than borrowA
mount.

• fetchDeployAmounts()
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong?With
incorrect matching of elements between lists.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _deployPosition(vaults, epochIds, amounts, vaultType);
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Deposit tokens to vaults. It can revert if balance of asset token is not
enough.

• hook.addr.afterDeploy()
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
This function is called if hook.command.shouldCallAfterDeploy() =) true.

Function: deposit(uint256 assets, address receiver)

If fundsDeployed is true, the deposit will be done over _queueDeposit. It allows any
caller to perform deposit of assets tokens and receive the shares. In case fundsDeplo
yed =) true, then the funds will be placed in the deposit queue.

Inputs

• assets
– Constraints: The caller should own this amount of asset tokens.

– Impact: The amount of asset tokens will be deposited.
• receiver

– Constraints: N/A.

– Impact: The receiver of shares.

Zellic 60 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• The balance of the receiver’s shares has increased properly.
4□ Test coverage

• The asset balance of msg.sender decreased by assets amount.
4□ Test coverage

Negative behavior

• The balance of msg.sender is less than assets.
4□ Negative test

Function call analysis

• _queueDeposit(receiver, assets)
– What is controllable? receiver and assets.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
The function is called in case of fundsDeployed =) true after the deployPo
sition function call by owner. Will revert if assets is less than minDeposit,
if queueContract has not been approved from msg.sender.

• asset.safeTransferFrom(msg.sender, address(this), assets);
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can revert if current contract does not have an approve from msg.sender
and if balance of msg.sender is less than assets amount.

• _mint(receiver, shares);
– What is controllable? receiver.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• hook.addr.afterDeposit(assets)
– What is controllable? assets.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can reenter but without negative impact because the function is called af-
ter all states changes.

Zellic 61 Y2K Finance

Function: requestWithdrawal(uint256 shares)

This cannot be called if fundsDeployed is false. It allows the owner of shares to add
shares to the queue for withdrawal.

Inputs

• shares
– Constraints: The amount of shares should be less than or equal to the rest
of shares of msg.sender, which were not added to the queue.

– Impact: The amount of shares will be added to the queue for withdrawal.

Branches and code coverage (including function calls)

Intended branches

• withdrawQueue[msg.sender].shareswas increased by shares amount.
4□ Test coverage

• totalQueuedShares[deployId]was increased by shares amount.
4□ Test coverage

Negative behavior

• Shares amount is more than balanceOf[msg.sender] - withdrawQueue[msg.send
er].shares.

4□ Negative test
• The fundsDeployed is false.

4□ Negative test

Function: setWeightStrategy(uint8 weightId, uint16 proportion, uint256[
] fixedWeights)

A restricted onlyOwner function. There are not checks of fixedWeights values if weigh
tId == 1 or 4. Also, fixedWeights can be an empty list.

Inputs

• weightId
– Constraints: 0 < weightId <) 4, but it should be 0 < weightId < 4.
– Impact: defines the strategy to use forweights. If weightId =) 3, fixedWeig

hts contains marketIds and threshold. If weightId =) 2, then fixedWeights
contains the custom weights. If weightId =) 1, then equalWeight, that is,
all available funds will be equally distributed between the vaults.

• proportion

Zellic 62 Y2K Finance

– Constraints: proportion <) 9999.
– Impact: Proportion of vault funds to use in each deployment to strategy.

• fixedWeights
– Constraints: If weightId =) 2, then the sum of weights should not be more
than 10,000.

– Impact: Update the global vaultWeights, which is used by PositionSizer
._thresholdWeight and PositionSizer._fixedWeight.

Branches and code coverage (including function calls)

Intended branches

• weightStrategy, weightProportion, and vaultWeights are updated properly.
4□ Test coverage

Negative behavior

• weightId =) 0.
4□ Negative test

• proportion > 9_999.
4□ Negative test

• weightId > strategyCount().
4□ Negative test

• weightId =) 2 and fixedWeights.length !) vaultList.length.
4□ Negative test

• weightId =) 3 and fixedWeights.length !) vaultList.length + 1.
4□ Negative test

Function: unrequestWithdrawal(uint256 shares)

This can be called only before closePosition because after close position, the deploy
Idwill be increased.

Inputs

• shares
– Constraints: The shares cannot be more than the shares from withdrawQue

ue[msg.sender].
– Impact: The amount of shares for withdrawal.

Branches and code coverage (including function calls)

Intended branches

Zellic 63 Y2K Finance

• The withdrawal is performed properly.
4□ Test coverage

Negative behavior

• The current deployId !) withdrawQueue[msg.sender].queue[length - 1].deplo
ymentId.

4□ Negative test
• Shares > item.shares.

4□ Negative test

Function: updateActiveList(address[] vaults, UpdateAction updateAction)

A restricted onlyOwner function.. Allows to update, delete vaultList, add new vaults,
and remove vaults.

Inputs

• vaults
– Constraints: The vault’s list will be checked by the checkVaultsValid func-
tion. The vault addresses, _vault.asset(), _vault.controller(), _vaul
t.treasury(), _vault.emissionsToken(), and _vault.counterPartyVault()
should not be zero.

– Impact: The new vault’s addresses.
• updateAction

– Constraints: Can be one of type — DeleteVaults, AppendVaults, ReplaceVa
ults, or DeleteVaults.

– Impact: The type of action.

Branches and code coverage (including function calls)

Intended branches

• Check that the vaultList has updated properly after every type of action.
4□ Test coverage

Negative behavior

• Check a vaults list that contains, in addition to the valid vault addresses, also
zero addresses.

4□ Negative test

Zellic 64 Y2K Finance

Function call analysis

• _appendVaults(vaults)
– What is controllable? vaults.
– If return value controllable, how is it used and howcan it gowrong? Return
the new vault list with appended elements.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _replaceVaults(vaults)
– What is controllable? vaults.
– If return value controllable, how is it used and howcan it gowrong? Return
the new vault list with new elements.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _removeVaults(vaults)
– What is controllable? vaults.
– If return value controllable, how is it used and howcan it gowrong? Return
the new vault list without removed elements.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

Function: withdrawFromQueue(address receiver, address owner)

This can be called only after requestWithdrawal. It allows the owner or user who has
allowance to withdraw asset tokens that have been queued for withdrawal.

Inputs

• receiver
– Constraints: No verification, but if msg.sender is not an owner, allowance[

owner][msg.sender] should be more than or equal to shares.
– Impact: The address of the receiver of asset tokens.

• owner
– Constraints: withdrawQueue[owner].shares should not be zero.
– Impact: The owner of shares.

Branches and code coverage (including function calls)

Intended branches

• The assets tokens were transferred properly and shares were burned.
□ Test coverage

Zellic 65 Y2K Finance

Negative behavior

• withdrawQueue[owner].shares =) 0.
4□ Negative test

• msg.sender != owner and allowance < shares.
□ Negative test

Function call analysis

• _previewQueuedWithdraw(owner)
– What is controllable? owner.
– If return value controllable, how is it used and howcan it gowrong? Return
the full amount of shares in queue and calculate the appropriate amount
of asset tokens.

– What happens if it reverts, reenters, or does other unusual control flow?
There is no problem.

• _withdraw(assets, shares, receiver, owner)
– What is controllable? receiver and owner.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can revert if asset balance of contract is less than assets amount. Also, it
can revert if the owner does not have enough shares.

Function: withdraw(uint256 shares, address receiver, address owner)

The user cannotwithdraw if fundsDeployed is true. It allows towithdraw assets tokens
from strategy.

Inputs

• shares
– Constraints: If shares is less than the owner balance, the function will be
reverted during burn.

– Impact: The amount of shares to withdraw. The asset number will be cal-
culated using the shares amount.

• receiver
– Constraints: No verification, but if msg.sender is not an owner, allowance[

owner][msg.sender] should be more than or equal to shares.
– Impact: The address of the receiver of asset tokens.

• owner
– Constraints: withdrawQueue[owner].shares should not be zero.
– Impact: The owner of shares.

Zellic 66 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• The assets tokens were transferred properly and shares were burned.
4□ Test coverage

Negative behavior

• msg.sender != owner and allowance < shares.
□ Test coverage

• The balance of owner is less than shares.
4□ Test coverage

Function call analysis

• _withdraw(assets, shares, receiver, owner)
– What is controllable? receiver and owner.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can revert if asset balance of the contract is less than assets amount. Also,
it can revert if the owner does not have enough shares.

5.6 Module: SwapRouter.sol

Function: swap(PathRoute path, uint256 amount, address receiver)

This swaps tokens using different routing paths and DEXs.

Inputs

• path
– Control: Fully controlled.

– Constraints: The function would revert if path.route is not one of these
values: 1, 2, or 3.

– Impact: The routing path information.
• amount

– Control: Fully controlled.

– Constraints: No constraints.

– Impact: The amount of tokens to swap.
• receiver

– Control: Fully controlled.

Zellic 67 Y2K Finance

– Constraints: No constraints.

– Impact: The address to receive the swapped tokens.

Branches and code coverage (including function calls)

Intended branches

• The function checks the route value in path and calls the corresponding DEX-
specific swap function.

4□ Test coverage
• The function returns the amount of swapped tokens.

4□ Test coverage

Negative behavior

• The function reverts with IErrors.InvalidPath() if the provided route value is
not recognized.
□ Negative test

Function call analysis

• CamelotSwapper._swapOnCamelot(path.bestPath, amount, path.toAmountMin,
receiver)
– What is controllable? path.bestPath, amount, path.toAmountMin, and recei

ver.
– If return value controllable, how is it used and how can it go wrong? This
function call returns the amount of tokens received after swapping.

– What happens if it reverts, reenters, or does other unusual control flow?
If the swap on Camelot fails, it will revert and the transaction will be rolled
back.

• SushiSwapper._swapOnSushi(path.bestPath, amount, path.toAmountMin, recei
ver)
– What is controllable? path.bestPath, amount, path.toAmountMin, and recei

ver.
– If return value controllable, how is it used and how can it go wrong? This
function call returns the amount of tokens received after swapping.

– What happens if it reverts, reenters, or does other unusual control flow? If
the swap on SushiSwap fails, it will revert and the transaction will be rolled
back.

• _swapOnUniswapV3(path.bestPath, path.fee, amount, path.toAmountMin,
receiver)
– What is controllable? path.bestPath, path.fee, amount, path.toAmountMin,
and receiver.

Zellic 68 Y2K Finance

– If return value controllable, how is it used and how can it go wrong? This
function call returns the amount of tokens received after swapping.

– What happens if it reverts, reenters, or does other unusual control flow?
If the swap on UniswapV3 fails, it will revert and the transaction will be
rolled back.

5.7 Module: bridgeController.sol

Function: _bridgeToSource(byte[1] _bridgeId, address _receiver, address
_token, uint256 _amount, uint16 _sourceChainId, byte[] _withdrawPayloa
d)

This bridges the token to the destination chain via the selected bridge.

Inputs

• _bridgeId
– Constraints: Has to be one of 0x01, 0x02 or 0x03.

– Impact: The ID of the bridge to use (e.g., 0x01, 0x02, 0x03).
• _receiver

– Constraints: No constraints.

– Impact: The address to receive the bridged tokens.
• _token

– Constraints: No constraints.

– Impact: The address of the token to bridge.
• _amount

– Constraints: No constraints.

– Impact: The amount of the token to bridge.
• _sourceChainId

– Constraints: No constraints.

– Impact: The ID of the chain the token is being bridged from (always calling
chain).

• _withdrawPayload
– Constraints: Should be encoded in the correct format based on the se-
lected bridge.

– Impact: The payload to decode for the extra inputs for each bridge.

Branches and code coverage (including function calls)

Intended branches

Zellic 69 Y2K Finance

• The function calls the appropriate _bridgeWith function based on _bridgeId.
4□ Test coverage

Negative behavior

• The function reverts if _bridgeId is not one of the supported bridge identifiers.
4□ Negative test

Function call analysis

• _bridgeWithCeler(_receiver, _token, _amount, _sourceChainId, abi.decode
(_withdrawPayload, (uint256)))
– What is controllable? _receiver, _token, _amount, _sourceChainId, and _wi

thdrawPayload.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _bridgeWithHyphen(_receiver, _token, _amount, _sourceChainId)
– What is controllable? _receiver, _token, _amount, and _sourceChainId.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _bridgeWithHop(_receiver, _token, _amount, _sourceChainId, maxSlippage,
bonderFee)
– What is controllable? _receiver, _token, _amount, _sourceChainId, maxSlip

page, and bonderFee.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _bridgeWithCeler(address _receiver, address _token, uint256 _
amount, uint16 _dstChainId, uint256 maxSlippage)

This bridges with Celer.

Inputs

• _receiver
– Constraints: No constraints.

– Impact: The address to receive the bridged tokens.
• _token

– Constraints: No constraints.

Zellic 70 Y2K Finance

– Impact: The address of the token to bridge.
• _amount

– Constraints: No constraints.

– Impact: The amount of the token to bridge.
• _dstChainId

– Constraints: No constraints.

– Impact: The ID of the chain the token is being bridged to.
• maxSlippage

– Constraints: No constraints.

– Impact: The max slippage allowed for the bridge.

Branches and code coverage (including function calls)

Intended branches

• The function approves the celerBridge contract to spend _amount of _token.
4□ Test coverage

• The function call celerBridge.send(...))) succeeds without reverting.
4□ Test coverage

Negative behavior

• The function reverts if the approval for celerBridge fails.
□ Negative test

Function call analysis

• ERC20(_token).safeApprove(address(celerBridge), _amount)
– What is controllable? _token and _amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• celerBridge.send(_receiver, _token, _amount, _dstChainId, uint64(block.t
imestamp), uint32(maxSlippage))
– What is controllable? _receiver, _token, _amount, _dstChainId, block.time

stamp, and maxSlippage.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Zellic 71 Y2K Finance

Function: _bridgeWithHop(address _receiver, address _token, uint256 _am
ount, uint16 _srcChainId, uint256 maxSlippage, uint256 bonderFee)

This bridges with Hop.

Inputs

• _receiver
– Constraints: No constraints.

– Impact: The address to receive the bridged tokens.
• _token

– Constraints: No constraints.

– Impact: The address of the token to bridge.
• _amount

– Constraints: No constraints.

– Impact: The amount of the token to bridge.
• _srcChainId

– Constraints: No constraints.

– Impact: The ID of the chain the token is being bridged from.
• maxSlippage

– Constraints: Should be less than or equal to 10,000.

– Impact: The max slippage allowed for the bridge — input of 100 would be
1% slippage.

• bonderFee
– Constraints: No constraints.

– Impact: The fee to pay the bonder.

Branches and code coverage (including function calls)

Intended branches

• The function calculates amountOutMin correctly based on maxSlippage.
4□ Test coverage

• The function approves the bridgeAddress to spend _amount of _token.
4□ Test coverage

• The function call to HopBridge succeeds without reverting.
4□ Test coverage

Negative behavior

• The function reverts if bridgeAddress is address(0).
□ Negative test

Zellic 72 Y2K Finance

• The function reverts if the approval for bridgeAddress fails.
□ Negative test

• The function reverts if maxSlippage is greater than 10,000.
□ Negative test

• The function reverts if the external call to HopBridge reverts.
□ Negative test

Function call analysis

• ERC20(_token).safeApprove(bridgeAddress, _amount)
– What is controllable? _token and _amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• IHopBridge(bridgeAddress).swapAndSend(_srcChainId, _receiver, _amount, b
onderFee, amountOutMin, deadline, (amountOutMin * 998) / 1000, deadline)
– What is controllable? _srcChainId, _receiver, _amount, bonderFee, and amo

untOutMin.
– If return value controllable, how is it used and how can it go wrong? The
return value is not controlled, but its impact is significant as it bridges the
tokens; incorrect values could lead to incorrect token transfers.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _bridgeWithHyphen(address _receiver, address _token, uint256
_amount, uint16 _srcChainId)

This bridges with Hyphen.

Inputs

• _receiver
– Constraints: No constraints.

– Impact: The address to receive the bridged tokens.
• _token

– Constraints: No constraints.

– Impact: The address of the token to bridge.
• _amount

– Constraints: No constraints.

– Impact: The amount of the token to bridge.
• _srcChainId

Zellic 73 Y2K Finance

– Constraints: No constraints.

– Impact: The ID of the chain the token is being bridged from.

Branches and code coverage (including function calls)

Intended branches

• The function approves the hyphenBridge contract to spend _amount of _token.
4□ Test coverage

• The function call hyphenBridge.depositErc20(...))) succeeds without reverting.
4□ Test coverage

Negative behavior

• The function reverts if the approval for hyphenBridge fails.
4□ Negative test

Function call analysis

• ERC20(_token).safeApprove(address(hyphenBridge), _amount)
– What is controllable? _token and _amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• hyphenBridge.depositErc20(_srcChainId, _token, _receiver, _amount, “Y2K
”)
– What is controllable? _srcChainId, _token, _receiver, and _amount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

5.8 Module: curve.sol

Function: zapInMulti(byte[] payload)

This decodes the payload and calls _multiSwap.

Inputs

• payload
– Constraints: Should decode to the correct format.

– Impact: The data to decode and pass to multiSwap.

Zellic 74 Y2K Finance

Branches and code coverage (including function calls)

Intended branches

• The payload decodes to the correct format, and the internal call to _multiSwap
succeeds.

4□ Test coverage

Negative behavior

• Revert if payload does not decode to the correct format.
□ Negative test

Function: _multiSwap(address[] path, address[] pools, uint256[] iValues
, uint256[] jValues, uint256 fromAmount, uint256 toAmountMin)

Delegates the swap logic for each swap/pair to _swapEth or _swap.

Inputs

• path
– Constraints: No constraints.

– Impact: An array of the tokens being swapped between.
• pools

– Constraints: No constraints.

– Impact: An array of Curve pools to swap with.
• iValues

– Constraints: No constraints.

– Impact: An array of indexes of the fromToken in each Curve pool.
• jValues

– Constraints: No constraints.

– Impact: An array of indexes of the toToken in each Curve pool.
• fromAmount

– Constraints: No constraints.

– Impact: The amount of fromToken to swap.
• toAmountMin

– Constraints: No constraints.

– Impact: The minimum amount of toToken to receive from the swap.

Branches and code coverage (including function calls)

Intended branches

Zellic 75 Y2K Finance

• If any of the path is address(0), use _swapEth for swapping tokens; otherwise,
use _swap.

4□ Test coverage

Negative behavior

• Revert if amountOut =) 0.
4□ Negative test

Function: _swapEth(address fromToken, address toToken, address pool, ui
nt256 i, uint256 j, uint256 fromAmount, uint256 toAmountMin)

This swaps on Curve with the logic for an ETH pool.

Inputs

• fromToken
– Constraints: No constraints.

– Impact: The token being swapped from.
• toToken

– Constraints: No constraints.

– Impact: The token being swapped to.
• pool

– Constraints: No constraints.

– Impact: The Curve pool being swapped with.
• i

– Constraints: No constraints.

– Impact: The index of the fromToken in the Curve pool.
• j

– Constraints: No constraints.

– Impact: The index of the toToken in the Curve pool.
• fromAmount

– Constraints: No constraints.

– Impact: The amount of fromToken to swap.
• toAmountMin

– Constraints: No constraints.

– Impact: The minimum amount of toToken to receive from the swap.

Branches and code coverage (including function calls)

Intended branches

Zellic 76 Y2K Finance

• The swap on Curve succeeds with the given parameters.
4□ Test coverage

Negative behaviour

• The swap on Curve fails if output tokens are less than toAmountMin.
□ Negative test

Function call analysis

• ERC20(fromToken).safeApprove(pool, fromAmount)
– What is controllable? fromToken, pool, and fromAmount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• ERC20(toToken).balanceOf(address(this))
– What is controllable? toToken.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• ICurvePair(pool).exchange(i, j, fromAmount, toAmountMin, false)
– What is controllable? pool, i, j, fromAmount, and toAmountMin.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _swapWithCurve(byte[] payload)

This decodes the payload and routes to _swap, _swapEth, or _multiSwap depending on
swapType.

Inputs

• payload
– Constraints: Should decode to the correct format.

– Impact: The data to decode and pass to the correct function.

Branches and code coverage (including function calls)

Intended branches

• If swapType is 0x01, 0x02, or 0x03, use the correct swap method.
4□ Test coverage

Zellic 77 Y2K Finance

Negative behavior

• Revert if amountOut =) 0.
□ Negative test

• Revert if swapType is not one of 0x01, 0x02 or 0x03.
4□ Negative test

Function: _swap(address fromToken, address toToken, address pool, int12
8 i, int128 j, uint256 fromAmount, uint256 toAmountMin)

This swaps on Curve with the logic for an ERC-20 pool.

Inputs

• fromToken
– Constraints: No constraints.

– Impact: The token being swapped from.
• toToken

– Constraints: No constraints.

– Impact: The token being swapped to.
• pool

– Constraints: No constraints.

– Impact: The Curve pool being swapped with.
• i

– Constraints: No constraints.

– Impact: The index of the fromToken in the Curve pool.
• j

– Constraints: No constraints.

– Impact: The index of the toToken in the Curve pool.
• fromAmount

– Constraints: No constraints.

– Impact: The amount of fromToken to swap.
• toAmountMin

– Constraints: No constraints.

– Impact: The minimum amount of toToken to receive from the swap.

Branches and code coverage (including function calls)

Intended branches

• The swap on Curve succeeds with the given parameters.
4□ Test coverage

Zellic 78 Y2K Finance

Negative behaviour

• The swap on Curve fails if output tokens are less than toAmountMin .
□ Negative test

Function call analysis

• ERC20(fromToken).safeApprove(pool, fromAmount)
– What is controllable? fromToken, pool, and fromAmount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• ERC20(toToken).balanceOf(address(this))
– What is controllable? toToken.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• ICurvePair(pool).exchange(i, j, fromAmount, toAmountMin)
– What is controllable? pool, i, j, fromAmount, and toAmountMin.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

5.9 Module: swapController.sol

Function: _swapBalancer(byte[] swapPayload)

This swaps using the balancerVault.

Inputs

• swapPayload
– Constraints: No constraints.

– Impact: The payload for the swap — varies by DEX.

Branches and code coverage (including function calls)

Intended branches

• The function calls the balancerVaultwith the provided swapPayload.
4□ Test coverage

• The function checks if the provided selector matches for a single swap or as-

Zellic 79 Y2K Finance

sumes multiswap if not.
4□ Test coverage

• In case of single swap, returns the decoded uint256 amount of toToken received.
4□ Test coverage

• In case of multiswap, checks negative asset deltas for received amounts and
reverts if none are found.

4□ Test coverage

Negative behavior

• The function reverts if the balancerVault call is not successful.
□ Negative test

Function call analysis

• balancerVault.call(swapPayload)
– What is controllable? swapPayload.
– If return value controllable, how is it used and how can it go wrong? Suc-
cess used for condition; data used for decoding results.

– What happens if it reverts, reenters, or does other unusual control flow?
This function call can revert if the balancerVault call fails — no reentrancy
scenarios.

Function: _swap(byte[1] dexId, uint256 fromAmount, byte[] swapPayload)

This uses the dexId to route the swap to the correct DEX logic.

Inputs

• dexId
– Constraints: Should be one of 0x01, 0x02, 0x03, or 0x04.

– Impact: The dexId of the DEX to be used (e.g., 0x01, 0x02, 0x03, or 0x04).
• fromAmount

– Constraints: No constraints.

– Impact: The amount of fromToken to be swapped.
• swapPayload

– Constraints: No constraints.

– Impact: The payload for the swap — varies by DEX.

Branches and code coverage (including function calls)

Intended branches

Zellic 80 Y2K Finance

• The function routes the swap based on dexId.
4□ Test coverage

Negative behavior

• The function reverts if dexId is not one of the supported DEX identifiers.
4□ Negative test

Function call analysis

• _swapUniswapV2(0x01/0x02, fromAmount, swapPayload)
– What is controllable? 0x01 or 0x02 (from _swap), fromAmount, and swapPay

load.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _swapUniswapV3(fromAmount, swapPayload)
– What is controllable? fromAmount and swapPayload.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _swapWithCurve(swapPayload)
– What is controllable? swapPayload.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

5.10 Module: uniswapV2.sol

Function: _executeSwap(address[] path, address[] pairs, uint256[] amoun
ts)

This executes swaps on the UniswapV2 fork.

Inputs

• path
– Constraints: No constraints.

– Impact: The array of token addresses to swap between.
• pairs

– Constraints: No constraints.

Zellic 81 Y2K Finance

– Impact: The array of pairs to swap through.
• amounts

– Constraints: No constraints.

– Impact: The array of amounts to swap with each pair.

Branches and code coverage (including function calls)

Intended branches

• The function correctly swaps tokens through the specified pairs.
4□ Test coverage

• The swap logic works as expected for multiple pairs or a single pair,
4□ Test coverage

Function call analysis

• IUniswapPair(pairs[0]).swap(zeroForOne ? 0 : amounts[0], zeroForOne ?
amounts[0] : 0, pairs[1], “”)
– What is controllable? pairs[0], zeroForOne, amounts[0], and pairs[1].
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• IUniswapPair(pairs[i]).swap(zeroForOne ? 0 : amounts[i], zeroForOne ?
amounts[i] : 0, pairs[i + 1], “”)
– What is controllable? pairs[i], zeroForOne, amounts[i], and pairs[i + 1].
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• IUniswapPair(pairs[pairs.length - 1]).swap(zeroForOne ? 0 : amounts[pair
s.length - 1], zeroForOne ? amounts[pairs.length - 1] : 0, address(this)
, “”)
– What is controllable? pairs[pairs.length - 1], zeroForOne, and amounts[

pairs.length - 1].
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _swapUniswapV2(byte[1] dexId, uint256 fromAmount, byte[] payl
oad)

This decodes the payload and conducts the swaps.

Zellic 82 Y2K Finance

Inputs

• dexId
– Constraints: Should be either 0x01 or 0x02,

– Impact: The ID for the DEX being used (0x01 for UniswapV2, 0x02 for
SushiSwap).

• fromAmount
– Constraints: No constraints,

– Impact: The amount of the fromToken being swapped.
• payload

– Constraints: Should be encoded in the correct format — abi.encode(addre
ss[] path, uint256 minAmountOut).

– Impact: The encoded payload for the swap.

Branches and code coverage (including function calls)

Intended branches

• The function correctly determines the initCodeHash and factory based on the
dexId.

4□ Test coverage
• The swap ratios and amounts are calculated correctly.

4□ Test coverage

Negative behavior

• The function reverts if the final amountOut is less than toAmountMin.
□ Negative test

Function call analysis

• _getPair(fromToken, toToken, initCodeHash, factory)
– What is controllable? fromToken and toToken.
– If return value controllable, how is it used and how can it go wrong? The
return value is used as an address for the pair; if manipulated, it can lead
to swapping on the wrong pair.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• IUniswapPair(pairs[i]).getReserves()
– What is controllable? pairs[i].
– If return value controllable, how is it used and how can it go wrong?
The return value (reserveA and reserveB) impacts the calculation of swap
amounts; this cannot be controlled.

Zellic 83 Y2K Finance

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• SafeTransferLib.safeTransfer(ERC20(path[0]), pairs[0], fromAmount)
– What is controllable? path[0], pairs[0], and fromAmount.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _executeSwap(path, pairs, amounts)
– What is controllable? path, pairs, and amounts.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

5.11 Module: uniswapV3.sol

Function: uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delt
a, byte[] _data)

This is the callback implementation for UniswapV3 pools.

Inputs

• amount0Delta
– Constraints: Either one of amount0Delta or amount1Delta should be greater
than zero.

– Impact: The amount of token0 received.
• amount1Delta

– Constraints: Either one of amount0Delta or amount1Delta should be greater
than zero.

– Impact: The amount of token1 received.
• _data

– Constraints: Should correctly decode to tokenIn, tokenOut, and fee.
– Impact: The encoded pool address, fee, and tokenOut address.

Branches and code coverage (including function calls)

Intended branches

• The function requires either amount0Delta or amount1Delta to be greater than
zero.

4□ Test coverage

Zellic 84 Y2K Finance

Negative behaviour

• The function reverts if neither amount0Delta nor amount1Delta are greater than
zero.
□ Negative test

• The function reverts if the caller is the incorrect pool.
4□ Negative test

Function call analysis

• decodePool(_data)
– What is controllable? _data.
– If return value controllable, how is it used and how can it go wrong? The
return value is used to extract tokenIn, tokenOut, and fee; if manipulated,
it could lead to incorrect token transfers.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• getPool(tokenIn, tokenOut, fee)
– What is controllable? tokenIn, tokenOut, and fee.
– If return value controllable, how is it used and how can it go wrong? The
return value is used as the caller of the function; ifmanipulated, an incorrect
pool could be considered as the caller.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• SafeTransferLib.safeTransfer(ERC20(tokenIn), msg.sender, amount0Delta >
0 ? uint256(amount0Delta) : uint256(amount1Delta))
– What is controllable? tokenIn, msg.sender, amount0Delta, and amount1Delt

a.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _executeSwap(address tokenIn, address tokenOut, uint256 fromA
mount, uint24 fee)

This executes the swap with the simulated V3 pool from tokenIn, tokenOut, and fee.

Inputs

• tokenIn
– Constraints: Should be a valid input token, such that the pool address gen-
erated is correct.

Zellic 85 Y2K Finance

– Impact: The address of the fromToken.
• tokenOut

– Constraints: Should be a valid output token, such that the pool address
generated is correct

– Impact: The address of the toToken.
• fromAmount

– Constraints: No constraints.

– Impact: The amount of fromToken to swap.
• fee

– Constraints: Should be the valid fee, such that the pool address generated
is correct.

– Impact: The fee for the pool.

Branches and code coverage (including function calls)

Intended branches

• The function handles swaps from tokenIn to tokenOut correctly.
4□ Test coverage

Function call analysis

• getPool(tokenIn, tokenOut, fee)
– What is controllable? tokenIn, tokenOut, and fee.
– If return value controllable, how is it used and how can it go wrong? The
return value is used to select the pool for the swap.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• IUniswapV3Pool(getPool(tokenIn, tokenOut, fee)).swap(...)))
– What is controllable? tokenIn, tokenOut, fee, address(this), zeroForOne,

int256(fromAmount), sqrtPriceLimitX96, and data.
– If return value controllable, how is it used and how can it go wrong? The
return value is used to extract the amountOut.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Function: _swapUniswapV3(uint256 fromAmount, byte[] payload)

This decodes the payload and conducts the swaps.

Zellic 86 Y2K Finance

Inputs

• fromAmount
– Constraints: No constraints.

– Impact: The amount of the fromToken being swapped.
• payload

– Constraints: No constraints.

– Impact: The encoded payload for the swap.

Branches and code coverage (including function calls)

Intended branches

• The function handles swaps for multitoken paths correctly.
4□ Test coverage

Negative behavior

• The function reverts if the resulting amountOut is less than toAmountMin.
□ Negative test

Function call analysis

• _executeSwap(path[0], path[1], fromAmount, fee[0])
– What is controllable? path[0], path[1], fromAmount, fee[0].
– If return value controllable, how is it used and how can it go wrong? The
return value is used as the input for the next swap.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _executeSwap(path[i], path[i + 1], amountOut, fee[i])
– What is controllable? path[i], path[i + 1], amountOut and fee[i].
– If return value controllable, how is it used and how can it go wrong? The
return value is used as the input for the next swap.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

• _executeSwap(path[path.length - 2], path[path.length - 1], amountOut,
fee[path.length - 2])
– What is controllable? path[path.length - 2], path[path.length - 1], amo

untOut, fee[path.length - 2].
– If return value controllable, how is it used and how can it go wrong? The
return value is the final amountOut.

– What happens if it reverts, reenters, or does other unusual control flow?
If this reverts, the entire call fails — no reentrancy issues.

Zellic 87 Y2K Finance

5.12 Module: vaultController.sol

Function: _claimRefund(address sender, address token)

This claims a refund for the original sender and token.

Inputs

• sender
– Constraints: No constraints.

– Impact: The address of the original sender.
• token

– Constraints: No constraints.

– Impact: The address of the token to refund.

Branches and code coverage (including function calls)

Intended branches

• The function checks if the sender is eligible for a refund and the amount to be
refunded.

4□ Test coverage
• The function transfers the refunded amount to the sender either in ETH or the
specified token.

4□ Test coverage
• The function emits a RefundClaimed event.

4□ Test coverage

Negative behavior

• The function reverts if the sender is not eligible for a refund (i.e., the mapping is
zero).

4□ Negative test
• The function reverts if the ETH transfer fails.

□ Negative test

Function call analysis

• payable(sender).call{value: amount}(“”)
– What is controllable? sender.
– If return value controllable, how is it used and how can it go wrong? The
return value indicates the success of the call, and the data provides more
details in case of failure.

Zellic 88 Y2K Finance

– What happens if it reverts, reenters, or does other unusual control flow?
If the call fails, it will revert and the transaction will be rolled back. The
checks-effects-interactions pattern is followed.

Function: _depositToVault(uint256 id, uint256 amount, address inputToke
n, address vaultAddress)

Deposits ERC-20 or ETH to the vault.

Inputs

• id
– Constraints: Should be the correct epoch ID for the Y2K vault.

– Impact: The epoch ID for the Y2K vault.
• amount

– Constraints: No constraints.

– Impact: The amount of the token to deposit.
• inputToken

– Constraints: No constraints.

– Impact: The address of the token to deposit.
• vaultAddress

– Constraints: Should be a valid vault address.

– Impact: The address of the vault to deposit to.

Branches and code coverage (including function calls)

Intended branches

• The function checks if inputToken is equal to sgEth to determine if an ETH or
ERC-20 deposit is needed.

4□ Test coverage
• The function returns true if the deposit is successful and false if it fails.

4□ Test coverage

Negative behavior

• The function returns false if any of the deposit attempts (ETH or ERC-20) fail.
4□ Negative test

Function call analysis

• IEarthquake(vaultAddress).depositETH{value: amount}(id, address(this))
– What is controllable? id, amount, vaultAddress.

Zellic 89 Y2K Finance

– If return value controllable, how is it used and how can it go wrong? This
function call does not return a value — only success/failure.

– What happens if it reverts, reenters, or does other unusual control flow?
If the deposit of ETH fails, the function would return false.

• IEarthquake(vaultAddress).deposit(id, amount, address(this))
– What is controllable? id, amount, and vaultAddress.
– If return value controllable, how is it used and how can it go wrong? This
function call does not return a value — only success/failure.

– What happens if it reverts, reenters, or does other unusual control flow?
If the deposit of ERC-20 tokens fails, the function would return false.

Function: _withdrawFromVault(uint256 id, uint256 assets, address receiv
er, address vaultAddress)

This withdraws from the vault.

Inputs

• id
– Constraints: Should be the correct epoch ID for the Y2K vault.

– Impact: The epoch ID for the Y2K vault.
• assets

– Constraints: No constraints.

– Impact: The amount of the token to withdraw.
• receiver

– Constraints: No constraints.

– Impact: The address to receive the withdrawn tokens.
• vaultAddress

– Constraints: Should be a valid vault address.

– Impact: The address of the vault to withdraw from.

Branches and code coverage (including function calls)

Intended branches

• The function calls the withdraw function of the IEarthquake contract to initiate
the withdrawal.

4□ Test coverage

Negative behavior

• The function reverts if the withdraw function call fails.

Zellic 90 Y2K Finance

4□ Negative test

Function call analysis

• IEarthquake(vaultAddress).withdraw(id, assets, receiver, address(this))
– What is controllable? id, assets, receiver, and vaultAddress.
– If return value controllable, how is it used and how can it go wrong? This
function call returns the actual amount of assets withdrawn.

– What happens if it reverts, reenters, or does other unusual control flow?
If the withdrawal fails, it will revert and the transaction will be rolled back
— no reentrancy scenarios.

5.13 Module: zapDest.sol

Function: claimRefund(address token, address sender)

This allows to claim a refund for the original sender and token. The eligibleRefund[s
ender][token] should not be zero. The eligibleRefund is set if the sgReceive function
has failed.

Inputs

• token
– Constraints: eligibleRefund[sender][token] !) 0.
– Impact: The address of tokens that will be refunded.

• sender
– Constraints: eligibleRefund[sender][token] !) 0.
– Impact: The receiver of token refund.

Branches and code coverage (including function calls)

Intended branches

• Refund is performed properly for token == sgEth.
4□ Test coverage

• Refund is performed properly for token != sgEth.
4□ Test coverage

Negative behavior

• eligibleRefund[sender][token] =) 0 for msg.sender.
4□ Negative test

Zellic 91 Y2K Finance

• Repeated function call after successful refund.
□ Negative test

Function call analysis

• _claimRefund -> payable(sender).call{value: amount}(“”);
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can reenter but without negative impact.

• _claimRefund -> ERC20(token).safeTransfer(sender, amount)
– What is controllable? N/A.

– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can reenter but without negative impact.

Function: lzReceive(uint16 _srcChainId, byte[] _srcAddress, uint64 _non
ce, byte[] _payload)

This allows to receive the message from other chains using LayerZero protocol. Only
LZ Endpoint can call this function. The function allows to perform one of the actions
that is determined by the value of the funcSelector. If funcSelector =) 0x01 then _wit
hdrawFromVault function will be invoke to direct withdraw funds from vaultAddress to
the receiver address in this chain. If funcSelector =) 0x03 then the withdrawn from
vaultAddress tokens will be swaped for the token requested by the user and after that
bridged to the other chain. Otherwise the withdrawn from vaultAddress tokens will
be just bridged to the other chain.

Inputs

• _srcChainId
– Constraints: There is a check that trustedRemoteLookup for _srcChainId is
equal to _srcAddress.

– Impact: The messages can be received only from trusted chains.
• _srcAddress

– Constraints: There is a check that trustedRemoteLookup for _srcChainId is
equal to _srcAddress.

– Impact: The messages can be received only from trusted user application
from other chains.

• _nonce
– Constraints: N/A.

Zellic 92 Y2K Finance

– Impact: Not used.
• _payload

– Constraints: N/A.

– Impact: Contains the data: the action, bridgeId, receiver, id, and vaultAd
dress.

Branches and code coverage (including function calls)

Intended branches

• The swap over UniswapV2 performed properly.
□ Test coverage

• The swap over UniswapV3 performed properly.
□ Test coverage

Negative behavior

• msg.sender is not layerZeroRelayer.
4□ Negative test

• trustedRemoteLookup is not set.
□ Negative test

• _srcChainId is untrusted.
4□ Negative test

• swapId > 0x02.
□ Negative test

Function call analysis

• _withdraw(funcSelector, bridgeId, receiver, id, _srcChainId, vaultAddres
s, _payload); -> _withdrawFromVault(id, assets, receiver, vaultAddress)
– What is controllable? id and vaultAddress.
– If return value controllable, how is it used and how can it go wrong? n/a

– What happens if it reverts, reenters, or does other unusual control flow?
the whitelisted trusted vaultAddress contract is called which transfer the
assets amount to the receiver. If receiver address is wrong then funds
can be lost, but in case of calling from other chain over lz the address of
receiver is msg.sender address, so it cannot be wrong.

• _withdraw(funcSelector, bridgeId, receiver, id, _srcChainId, vaultAddres
s, _payload); -> _swapToBridgeToken(amountReceived, asset, _payload);
– What is controllable? _payload

– If return value controllable, how is it used and how can it go wrong? re-
turn the resulted token address, the rest of payload and the final swap

Zellic 93 Y2K Finance

amount. The token address is controlled by user, but for this address the
valid uniswap pair contract should exists, otherwise function will revert.

– What happens if it reverts, reenters, or does other unusual control flow?
can revert if uniswap pair is not exist for token and toToken addresses.

• _withdraw(funcSelector, bridgeId, receiver, id, _srcChainId, vaultAddres
s, _payload); -> _bridgeToSource(bridgeId, receiver, asset, _srcChainId,
_payload);
– What is controllable? bridgeId, _payload, _srcChainId

– If return value controllable, how is it used and how can it go wrong? n/a

– What happens if it reverts, reenters, or does other unusual control flow?
can revert due to issues during bridging

Function: sgReceive(uint16 _chainId, byte[] _srcAddress, uint256 _nonce
, address _token, uint256 amountLD, byte[] _payload)

Allows to receive tokens from another chain. Only stargateRelayer (Router) can call
this function. The native tokenwill be transferred to this contract before triggering this
function.

Inputs

• _chainId
– Constraints: N/A.

– Impact: Not used.
• _srcAddress

– Constraints: N/A.

– Impact: Not used.
• _nonce

– Constraints: N/A.

– Impact: Not used.
• _token

– Constraints: No checks.

– Impact: The address of token will be deposited to the vault. This address
is received from pool.

• amountLD
– Constraints: This value is not controlled by the user who initiated the token
transfer between chains. This value is a result of swap.

– Impact: The amount of tokens received. This amount of _tokenwill be de-
posited to the vault and the receiverToVaultToIdToAmount for the receiver
will be increased by amountLD value.

• _payload

Zellic 94 Y2K Finance

– Constraints: vaultAddress should be whitelisted.
– Impact: Contains this data — receiver, id, and vaultAddress.

Branches and code coverage (including function calls)

Intended branches

• Deposit in case token =) sgEth.
4□ Test coverage

• Deposit in case token !) sgEth.
4□ Test coverage

Negative behavior

• msg.sender is not stargateRelayer or stargateRelayerEth.
4□ Negative test

• vaultAddress is not whitelisted.
□ Negative test

Function call analysis

• _stageRefund(receiver, _token, amountLD)
– What is controllable? receiver, _token, and amountLD.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
The function increments the global eligibleRefund[receiver][_token] by
a amountLD value. This eligibleRefund value is used in the claimRefund->_
claimRefund function.

• _depositToVault(id, amountLD, _token, vaultAddress)
– What is controllable? id, amountLD, _token, and vaultAddress.
– If return value controllable, how is it used and how can it go wrong? Re-
turns a boolean value, successfully or unsuccessfully the external call of
deposit function was executed.

– What happens if it reverts, reenters, or does other unusual control flow?
the function deposits funds to the vaultAddress contract.

Function: withdraw(byte[1] funcSelector, byte[1] bridgeId, address re
ceiver, uint256 id, uint16 _srcChainId, address vaultAddress, byte[]
_withdrawPayload)

The direct call of the _withdraw function is only available for receiver for which the
value receiverToVaultToIdToAmount[receiver][vaultAddress][id] is not zero.

Zellic 95 Y2K Finance

5.14 Module: zapFrom.sol

Function: bridge(uint256 amountIn, address fromToken, uint16 srcPoolId,
uint16 dstPoolId, byte[] payload)

There is no check that msg.value is not less than amountIn in case of fromToken == add
ress(0). The function allows to bridge and deposit to vaults using Stargate.

Inputs

• amountIn
– Constraints: !)0.
– Impact: The amount of token for the swap.

• fromToken
– Constraints: There is no check, but it should be the same address as pool.

token().
– Impact: The address of the token in srcPoolId.

• srcPoolId
– Constraints: router.swap reverts if factory.getPool(_poolId) returns zero
address.

– Impact: The ID of the SRC pool.
• dstPoolId

– Constraints: The owner of the router should create and activate the chain
path for _dstChainId and _dstPoolId. The _dstChainId is constant ARBITRU
M_CHAIN_ID.

– Impact: The ID of the DST pool.
• payload

– Constraints: This is not verified.

– Impact: Contain the data for ZapDest, expected address receiver, uint256
vaultId, and address vaultAddress.

Branches and code coverage (including function calls)

Intended branches

• The Stargate swap() is performed properly.
□ Test coverage

Negative behavior

• msg.value < amountIn and fromToken =) address(0).
□ Negative test

Zellic 96 Y2K Finance

• msg.sender does not have enough fromToken tokens.
□ Negative test

Function call analysis

• ERC20(fromToken).safeTransferFrom(msg.sender,address(this),amountIn)
– What is controllable? fromToken and amountIn.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can reenter but without negative impact.

• _bridge(amountIn, fromToken, srcPoolId, dstPoolId, payload) -> IStargate
Router(stargateRouterEth).swapETHAndCall{value: msgValue}
– What is controllable? amountIn, fromToken, srcPoolId, dstPoolId, and payl

oad.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Deposit funds to the stargateEthVault and call stargateRouter.swap. Will
revert if amountIn > msgValue.

• _bridge(amountIn, fromToken, srcPoolId, dstPoolId, payload) -> IStargate
Router(stargateRouter).swap{value: msg.value}
– What is controllable? amountIn, fromToken, srcPoolId, dstPoolId, and payl

oad.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
No problem.

Function: permitSwapAndBridge(address receivedToken, uint16 srcPoolId,
uint16 dstPoolId, byte[1] dexId, PermitTransferFrom permit, SignatureT
ransferDetails transferDetails, byte[] sig, byte[] swapPayload, byte[]
bridgePayload)

The function allows to swap with permit, bridge, and deposit to vaults using Stargate.
Add check that receivedToken is equal to the last token in swap.

Inputs

• receivedToken
– Constraints: N/A.

– Impact: Expected that this token is last in swap.
• srcPoolId

– Constraints: router.swap reverts if factory.getPool(_poolId) returns zero

Zellic 97 Y2K Finance

address.

– Impact: The ID of SRC pool.
• dstPoolId

– Constraints: The owner of the router should create and activate the chain
path for _dstChainId and _dstPoolId. The _dstChainId is constant ARBITRU
M_CHAIN_ID.

– Impact: The ID of DST pool.
• dexId

– Constraints: Revert if dexId is not 0x01, 0x02, 0x03, 0x04, or 0x05.
– Impact: The ID of the DEX that will be used.

• permit
– Constraints: Checked inside the permitTransferFrom function.
– Impact: The permit data signed over by the owner.

• transferDetails
– Constraints: N/A.

– Impact: The spender’s requested transfer details for the permitted token.
• sig

– Constraints: Checked inside the permitTransferFrom function.
– Impact: The signature to verify.

• swapPayload
– Constraints: N/A.

– Impact: The data required for swap.
• bridgePayload

– Constraints: Is not verified.

– Impact: Contain the data for ZapDest, expected address receiver, uint256
vaultId, and address vaultAddress.

Branches and code coverage (including function calls)

Intended branches

• _swapBalancer is performed properly.
□ Test coverage

• _swapUniswapV2 is performed properly.
4□ Test coverage

• _swapUniswapV3 is performed properly.
□ Test coverage

• SushiSwap is performed properly.
□ Test coverage

• _swapWithCurve is performed properly.

Zellic 98 Y2K Finance

□ Test coverage

Negative behavior

• The invalid permit.
□ Negative test

• The invalid signature.
□ Negative test

• The receivedToken is not the last token in swap.
□ Negative test

• The receivedToken is zero address.
□ Negative test

Function call analysis

• _swap(dexId,transferDetails.requestedAmount,swapPayload); -> otherFuncti
on(args)
– What is controllable? dexId, transferDetails.requestedAmount, and swapP

ayload.
– If return value controllable, how is it used and how can it go wrong? Re-
turns the final number of tokens after the swap.

– What happens if it reverts, reenters, or does other unusual control flow?
Can revert if dexId is invalid — also can revert if final amount will be less
than minimum out amount.

• _swapBalancer(swapPayload) -> balancerVault.call(swapPayload)
– What is controllable? swapPayload.
– If return value controllable, how is it used and how can it go wrong? Re-
turns the final number of tokens after the swap.

– What happens if it reverts, reenters, or does other unusual control flow?
Revert if swap failed.

• _bridge(amountIn, fromToken, srcPoolId, dstPoolId, payload) -> IStargate
Router(stargateRouterEth).swapETHAndCall{value: msgValue}
– What is controllable? amountIn, fromToken, srcPoolId, dstPoolId, and payl

oad.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Deposit funds to the stargateEthVault and call stargateRouter.swap. Will
revert if amountIn > msgValue.

• _bridge(amountIn, fromToken, srcPoolId, dstPoolId, payload) -> IStargate
Router(stargateRouter).swap{value: msg.value}
– What is controllable? amountIn, fromToken, srcPoolId, dstPoolId, and payl

Zellic 99 Y2K Finance

oad.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
No problem.

Function: swapAndBridge(uint256 amountIn, address fromToken, address re
ceivedToken, uint16 srcPoolId, uint16 dstPoolId, byte[1] dexId, byte[]
swapPayload, byte[] bridgePayload)

The same function as permitSwapAndBridge but transfers fromTokenwith approve from
msg.sender instead of permit.

Function: withdraw(byte[] payload)

This allows to send a message to withdraw funds from the ARBITRUM chain. The mes-
sage can trigger one of these functions: withdraw, withdrawAndBridge, or withdrawSwa
pAndBridge.

Inputs

• payload
– Constraints: No verifications.

– Impact: It contains all the necessary data for withdrawal: funcSelector,
bridgeId, receiver, ID (the ID for the epoch being withdraw from), and va
ultAddress. Also can contain data for swap — swapId, toAmountMin, dexId,
toToken, and fee — and for bridging: maxSlippage in case of _bridgeWithC
eler, maxSlippage and bonderFee in case of _bridgeWithHop. The receiver
address will be changed to the msg.sender address.

Function call analysis

• ILayerZeroRouter(layerZeroRouter).send
– What is controllable? payload.
– If return value controllable, how is it used and how can it go wrong? N/A.

– What happens if it reverts, reenters, or does other unusual control flow?
Can revert in case of unpaid fee.

Zellic 100 Y2K Finance

6 Assessment Results

At the time of our assessment, the reviewed code was deployed to Arbitrum.

During our assessment on the scoped Y2K Finance contracts, we discovered 14 find-
ings. One critical issue was found. Three were of high impact, four were of medium
impact, five were of low impact, and the remaining finding was informational in na-
ture. Y2K Finance acknowledged all findings and implemented fixes.

6.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in otherwords, the evaluation results do not guarantee the absence of
any subsequent issues. Zellic, of course, also cannotmake guarantees about any code
added to the project after the version reviewed during our assessment. Furthermore,
because a single assessment can never be considered comprehensive, we always
recommend multiple independent assessments paired with a bug bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code. These recommendations are
not exhaustive, and we encourage our partners to consider them as a starting point
for further discussion. We are happy to provide additional guidance and advice as
needed.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 101 Y2K Finance

	About Zellic
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Y2K Finance
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Emissions can be claimed multiple times
	The value of queuedWithdrawalTvl can be artificially inflated
	The lack of token addresses' verification
	The lack of verification of the payload data
	Incorrect loop implementation in the function clearQueuedDeposits
	Lack of data validation for trustedRemoteLookup
	Array out-of-bound exception in _removeVaults
	The function _removeVaults returns early
	The weightStrategy range violation
	Incompatibility with USDT token
	Conversion between different units does not account for token decimals
	Malicious users can profit due to temporary exchange rate fluctuations
	Incorrect weights calculation
	Incorrect return value in fetchEpochIds in case of invalid vaults

	Discussion
	Variable naming suggestion
	Documentation contains additional parameter that is not included in the code
	The function _swapUniswapV2 can be rewritten as it only expects one token swap
	LayerZero configuration
	Use Non-blocking pattern instead of blocking pattern in lzReceive
	Use reentrancy guards in deposit and withdraw functions

	Threat Model
	Module: ERC4626.sol
	Module: HookAaveFixYield.sol
	Module: HookAave.sol
	Module: QueueContract.sol
	Module: StrategyVault.sol
	Module: SwapRouter.sol
	Module: bridgeController.sol
	Module: curve.sol
	Module: swapController.sol
	Module: uniswapV2.sol
	Module: uniswapV3.sol
	Module: vaultController.sol
	Module: zapDest.sol
	Module: zapFrom.sol

	Assessment Results
	Disclaimer

