
Confidential

SMART CONTRACT AUDIT REPORT

for

New Order

Prepared By: Xiaomi Huang

PeckShield
June 18, 2022

1/18 PeckShield Audit Report #: 2022-246

contact@peckshield.com

Confidential

Document Properties

Client New Order
Title Smart Contract Audit Report
Target New Order
Version 1.0-rc
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0-rc June 18, 2022 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2022-246

Confidential

Contents

1 Introduction 4
1.1 About New Order . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improper Logic Of Vault::withdraw()/redeem() . 11
3.2 Improper Logic Of SemiFungibleVault::setApprovalForAll() 12
3.3 Immutable States If Only Set at Constructor() . 13
3.4 Suggested Event Generation For Key Operations . 14
3.5 Trust Issue Of Admin Keys . 15

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2022-246

Confidential

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
New Order protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About New Order

New Order is a decentralized platform that provides a series of services. It allows users to deposit their
WETH as collateral to predict the token price. By doing so, the user can profit from the rise or fall of
the token. Additionally, it allows users to stake or lock up the supported assets to earn yield from
different farming strategies. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of New Order

Item Description
Target New Order
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report June 18, 2022

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit.

• https://github.com/new-order-network/Y2K-smartcontracts.git (96fdcf0)

• https://github.com/new-order-network/RewardsVault.git (4e2df32)

4/18 PeckShield Audit Report #: 2022-246

Confidential

• https://github.com/new-order-network/merkle-distributor.git (9a2b109)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/18 PeckShield Audit Report #: 2022-246

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2022-246

Confidential

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2022-246

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2022-246

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the New Order implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 1

Low 0

Informational 2

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/18 PeckShield Audit Report #: 2022-246

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 1 medium-severity vulnerability, and 2 informational recommendations.

Table 2.1: Key New Order Audit Findings

ID Severity Title Category Status
PVE-001 High Improper Logic Of

Vault::withdraw()/redeem()
Business Logic

PVE-002 High Improper Logic Of SemiFungible-
Vault::setApprovalForAll()

Business Logic

PVE-003 Informational Immutable States If Only Set at Con-
structor()

Coding Practices

PVE-004 Informational Suggested Event Generation For Key
Operations

Coding Practices

PVE-005 Medium Trust Issue Of Admin Keys Security Features

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/18 PeckShield Audit Report #: 2022-246

Confidential

3 | Detailed Results

3.1 Improper Logic Of Vault::withdraw()/redeem()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: Vault

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

By design, the Vault contract is one of the main entries for interaction with users, which accepts the
deposits of the supported assets. In particular, one entry routine, i.e., withdraw(), is used by the user
to withdraw the assets by himself or on behalf of others. While examining its logic, we observe there
is an improper implementation that needs to be improved.

To elaborate, we show below the code snippet of the withdraw() routine. It accepts four input
parameters: the first id parameter represents the ERC1155 token id, the second assets parameter
specifies the withdrawal amount, the third receiver parameter specifies the recipient of the withdrawal
assets, and the last owner parameter indicates the indeed owner of the withdrawal assets. In short,
it allows the msg.sender to withdraw the assets on behalf of the specified owner. However, in the
withdraw() routine, we observe there is no necessary sanity check to ensure that the owner assigns
approval to the msg.sender. Given this, the malicious actor can steal other’s assets.

190 function withdraw(
191 uint256 id ,
192 uint256 assets ,
193 address receiver ,
194 address owner
195)
196 public
197 override
198 EpochHasEnded(id)
199 marketExists(id)
200 returns (uint256 shares)

11/18 PeckShield Audit Report #: 2022-246

Confidential

201 {
202 shares = previewWithdraw(id, assets); // No need to check for rounding error ,

previewWithdraw rounds up.
203 if (msg.sender != owner) {
204 if (isApprovedForAll(owner , address(this))) {
205 _setApprovalForAll(owner , address(this), false);
206 }
207 }
208
209 uint256 entitledShares = beforeWithdraw(id, shares);
210 _burn(owner , id, shares);
211
212 emit Withdraw(msg.sender , receiver , owner , id , assets , entitledShares);
213 asset.safeTransfer(receiver , entitledShares);
214
215 return entitledShares;
216 }

Listing 3.1: Vault::withdraw()

Note that the redeem() routine shares the same issue.

Recommendation Add necessary approval checks in above-mentioned routines.
Status

3.2 Improper Logic Of SemiFungibleVault::setApprovalForAll()

• ID: PVE-002

• Severity: High

• Likelihood: High

• Impact: High

• Target: SemiFungibleVault

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The SemiFungibleVault contract inherits from the ERC1155Supply contract, which follows the standard
ERC1155 specification. In particular, we observe it overwrites the setApprovalForAll() routine (designed
to assign the user’s own approval to the spender). While examining its logic, it comes to our attention
that there is an improper implementation that needs to be improved.

To elaborate, we show below the code snippet of the setApprovalForAll() routine. By design, it
should be used to assign the msg.sender’s own approval to the spender. However, we notice both the
owner and spender are specified by the caller via the input _owner and _spender parameters. That is
to say, the malicious actor has capability to assign anyone’s approval to himself. By doing so, the
malicious actor can steal anyone’s assets.

12/18 PeckShield Audit Report #: 2022-246

Confidential

254 function setApprovalForAll(
255 address _owner ,
256 address _spender ,
257 bool _approved
258) external {
259 _setApprovalForAll(_owner , _spender , _approved);
260 }

Listing 3.2: SemiFungibleVault::setApprovalForAll()

Recommendation Revisit the implementation of the above-mentioned routine.

Status

3.3 Immutable States If Only Set at Constructor()

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-561 [2]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

While examining all the state variables defined in the New Order protocol, we observe there are
several variables that need not to be updated dynamically. They can be declared as immutable for
gas efficiency.

9 contract Vault is SemiFungibleVault {
10
11 /* ///
12 IMMUTABLES AND STORAGE
13 // */

13/18 PeckShield Audit Report #: 2022-246

Confidential

14
15 address public tokenInsured;
16 ...
17 int256 public strikePrice;
18 address private Admin;
19 ...
20 }

Listing 3.3: Vault

Recommendation Revisit the state variable definition and make good use of immutable/constant
states.

Status

3.4 Suggested Event Generation For Key Operations

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

While examining the events that reflect the protocol dynamics, we notice there are several key
operations that lack meaningful events to reflect their changes. In the following, we show several
representative routines.

289 /**
290 @param _fee uint256 of the fee value , multiply your % value by 10, Example: if you

want fee of 0.5% , insert 5;
291 **/
292 function changeFee(uint256 _fee) public onlyAdmin {
293 feeTaken = _fee;
294 }
295
296 function changeTreasury(address _treasury) public onlyAdmin {
297 treasury = _treasury;
298 }

14/18 PeckShield Audit Report #: 2022-246

Confidential

299
300 function changeTimewindow(uint256 _timewindow) public onlyAdmin {
301 timewindow = _timewindow;
302 }

Listing 3.4: Vault

With that, we suggest to emit meaningful events for these key operations. Also, the key event
information is better indexed. Note each emitted event is represented as a topic that usually consists
of the signature (from a keccak256 hash) of the event name and the types (uint256, string, etc.) of its
parameters. Each indexed type will be treated like an additional topic. If an argument is not indexed,
it will be attached as data (instead of a separate topic). Considering that the key information is
typically queried, it is better treated as a topic, hence the need of being indexed.

Recommendation Properly emit the above-mentioned events with accurate information to
timely reflect state changes. This is very helpful for external analytics and reporting tools.

Status

3.5 Trust Issue Of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [1]

Description

In the New Order protocol, there is a privileged account that plays a critical role in governing and reg-
ulating the protocol-wide operations (e.g., configuring various system parameters). In the following,
we show the representative functions potentially affected by the privilege of the account.

152 function setController(address _controller) public onlyAdmin {
153 controller = _controller;
154 }
155
156 function changeVaultFee(uint256 _marketIndex , uint256 _fee) public onlyAdmin {
157 address [] memory vaults = indexVaults[_marketIndex];
158 Vault insr = Vault(vaults [0]);
159 Vault risk = Vault(vaults [1]);
160 insr.changeFee(_fee);
161 risk.changeFee(_fee);
162 }

Listing 3.5: VaultFactory

15/18 PeckShield Audit Report #: 2022-246

Confidential

312 function recoverERC20(address tokenAddress ,uint256 tokenAmount) external onlyOwner {
313 if (whitelistRecoverERC20[tokenAddress] == false) revert NotWhitelisted ();
314
315 uint balance = IERC20(tokenAddress).balanceOf(address(this));
316 if (balance < tokenAmount) revert InsufficientBalance ();
317
318 IERC20(tokenAddress).safeTransfer(owner(), tokenAmount);
319 emit RecoveredERC20(tokenAddress , tokenAmount);
320 }

Listing 3.6: LockRewards::recoverERC20()

We emphasize that the privilege assignment is indeed necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is a plain EOA account. A multi-sig account
could greatly alleviate this concern, though it is still far from perfect. Note that a compromised
privileged account would allow the attacker to modify a number of sensitive system parameters,
which directly undermines the assumption of the protocol design.

Recommendation Suggest a multi-sig account plays the privileged account to mitigate this
issue. Additionally, all changes to privileged operations may need to be mediated with necessary
timelocks.

Status

16/18 PeckShield Audit Report #: 2022-246

Confidential

4 | Conclusion

In this audit, we have analyzed the New Order design and implementation. New Order is a decentralized
platform that provides a series of services. It allows users to deposit their WETH as collateral to predict
the token price. By doing so, the user can profit from the rise or fall of the token. Additionally, it
allows users to stake or lock up the supported assets to earn yield from different farming strategies.
The current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

17/18 PeckShield Audit Report #: 2022-246

Confidential

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2022-246

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About New Order
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Logic Of Vault::withdraw()/redeem()
	Improper Logic Of SemiFungibleVault::setApprovalForAll()
	Immutable States If Only Set at Constructor()
	Suggested Event Generation For Key Operations
	Trust Issue Of Admin Keys

	Conclusion
	References

