// HALBORN

NewOrderDAO - Y2K

Finance
Smart Contract Security Audit

Prepared by: Halborn
Date of Engagement: May 31st, 2022 - Jun 13th, 2022
Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 7

CONTACTS 7
1 EXECUTIVE OVERVIEW 8
1.1 INTRODUCTION 9
1.2 AUDIT SUMMARY 9
1.3 TEST APPROACH & METHODOLOGY 10
RISK METHODOLOGY 10
1.4 SCOPE 12
2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 13
3 FINDINGS & TECH DETAILS 15
3.1 (HAL-01) MISSING CONTROLLER ADDRESS VALIDATION - MEDIUM 17
Description 17
Code location 17
Proof of Concept 18
Risk Level 20
Recommendation Pl

3.2 (HAL-02) INTEGER UNDERFLOW - MISSING FEE VALIDATION - MEDIUM

21
Description 21
Code location 21
Proof of Concept 23
Risk Level 24
Recommendation 24

3.3 (HAL-03) RELOCKING OF ASSETS DOES NOT WORK PROPERLY - MEDIUM
25

3.4

3.5

3.6

3.

7

Description 25

Proof of Concept 25
Risk Level 28
Recommendation 28

(HAL-04) CLAIMED AMOUNTS ARE MAPPED TO INDEXES IN MERKLE TREE -

MEDIUM 29
Description 29
Code location 29
Proof of Concept 30
Risk Level 31
Recommendation 32

(HAL-05) CONTRACT IS NOT PAUSED DURING MERKLE ROOT UPDATE -

MEDIUM 33
Description 33
Code location 33
Risk Level 33
Recommendation 33

(HAL-06) ERC4626 DOES NOT WORK WITH FEE-ON-TRANSFER TOKENS -

MEDIUM 34
Description 34
Code location 34
Risk Level 35
Recommendation 35

(HAL-07) ORACLE CAN BE OVERWRITTEN ON THE MARKET CREATION -
MEDIUM 36

Description 36

3.

3.

3.

8

9

.10

11

Scenario

Code Location
Risk Level
Recommendation

Remediation Plan

36

36

37

37

37

(HAL-08) SHOULD CHECK RETURN DATA FROM CHAINLINK AGGREGATORS -

MEDIUM

Description

Code Location

Risk Level

Recommendation

Remediation Plan

(HAL-09) FLOATING PRAGMA - LOW
Description

Code location

Risk Level

Recommendation

38

38

38

38

39

39

40

40

40

40

40

(HAL-10) MISSING PAUSE/UNPAUSE FUNCTIONALITY ON THE LOCKREWARDS

CONTRACT - LOW

Description

Code location
Risk Level
Recommendation

(HAL-11) MISSING VALIDATION - LOW

Description

41

41

41

41

41

42

42

.12

.13

14

.15

.16

17

Code Location 42

Risk Level 44
Recommendation 44
(HAL-12) IMPROPER ROLE BASED ACCESS CONTROL - LOW 45
Description 45
Risk Level 45
Recommendation 45
(HAL-13) OWNER CAN WITHDRAW ALL TOKENS - LOW 46
Description 46
Code location 46
Recommendation 46
(HAL-14) MISSING RE-ENTRANCY PROTECTION - LOW 47
Description 47
Code location 47
Recommendation 48
(HAL-15) LONG ERROR MESSAGES - INFORMATIONAL 49
Description 49
Code location 49
Recommendation 49
(HAL-16) OPTIMIZE UNSIGNED INTEGER COMPARISON - INFORMATIONAL

50

Description 50
Code location 50
Recommendation 50
(HAL-17) PREFIX INCREMENTS ARE CHEAPER THAN POSTFIX INCREMENTS -

INFORMATIONAL 51

Description 51

.18

.19

.20

.21

.22

.23

Code location 51

Recommendation 51
(HAL-18) CHECK AMOUNT IS GREATER THAN @ TO AVOID UNNECESSARILY
CALLING SAFETRANSFER() - INFORMATIONAL 52
Description 52
Code location 52
Recommendation 52
(HAL-19) ROUNDING PROBLEMS IN THE EIP 4626 - INFORMATIONAL 53
Description 53
Recommendation 53
(HAL-20) EVENTS ARE NOT INDEXED - INFORMATIONAL 54
Description 54
Recommendation 54
(HAL-21) MISSING EVENTS ON CHANGES - INFORMATIONAL 55
Description 55
Code Location 55
Recommendation 55
(HAL-22) UINT CAN’T BE LOWER THAN ZERO - INFORMATIONAL 56
Description 56
Code Location 56
Recommendation 56
(HAL-23) NO NEED TO INITIALIZE VARIABLES WITH DEFAULT VALUES -
INFORMATIONAL 57
Description 57
Code Location 57

Recommendation 57

3.24 (HAL-24) IMMUTABLE VARIABLES - INFORMATIONAL

4.1

4.2

Description

Code Location
Recommendation
AUTOMATED TESTING
STATIC ANALYSIS REPORT
Description

Slither results
AUTOMATED SECURITY SCAN

Description

58

58

58

58

59

69

60

69

92

92

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 06/13/2022 Pawel Bartunek
0.2 Document Amended 06/14/2022 Pawel Bartunek
0.3 Document Edits 06/17/2022 Gokberk Gulgun
0.4 Draft Review 06/17/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn. com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Pawel Bartunek Halborn Pawel.Bartunek@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Pawel.Bartunek@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

NewOrderDAO engaged Halborn to conduct a security audit on their smart
contracts beginning on May 31st, 2022 and ending on Jun 13th, 2022 . The
security assessment was scoped to the smart contracts provided to the
Halborn team.

The project included four main contracts:

® Core Y2K contracts - a Vault where risk and insurance users may
deposit tokens

®* Staking Rewards - Synthetix StakingRewards contract modified for
ERC1155.

®* Rewards Vault - distributes rewards to governance token holders who
lock their assets

®* Merkle Distributor - airdrop contract

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-
signed a full-time security engineer to audit the security of the smart
contract. The security engineer is a blockchain and smart-contract se-
curity expert with advanced penetration testing, smart-contract hacking,
and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Ensure that smart contract functions operate as intended
®* Identify potential security issues with the smart contracts

Overall, the code was of good quality and thoroughly documented. Test
cases were implemented and covered the majority of normal user flows of
the platform.

EXECUTIVE OVERVIEW

In summary, Halborn identified some security risks that should be reviewed
by the NewOrderDAO team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy regarding
the scope of this audit. While manual testing is recommended to uncover
flaws in logic, process, and implementation, automated testing techniques
help enhance coverage of the code and can quickly identify items that do
not follow security best practices. The following phases and associated
tools were used throughout the term of the audit:

® Research into architecture and purpose

Smart contract manual code review and walk through

Graphing out functionality and contract logic/connectivity/functions

(solgraph)

® Manual assessment of use and safety for the critical Solidity vari-
ables and functions in scope to identify any arithmetic related
vulnerability classes

® Manual testing by custom scripts

® Static Analysis of security for scoped contract, and imported func-

tions (Slither)

Local or Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY :

Vulnerabilities or issues observed by Halborn are ranked based on the risk
assessment methodology by measuring the LIKELIHOOD of a security incident
and the IMPACT should an incident occur. This framework works for commu-
nicating the characteristics and impacts of technology vulnerabilities.
The quantitative model ensures repeatable and accurate measurement while
enabling users to see the underlying vulnerability characteristics that
were used to generate the Risk scores. For every vulnerability, a risk
level will be calculated on a scale of 5 to 1 with 5 being the highest

10

EXECUTIVE OVERVIEW

likelihood or

RISK SCALE - L

5 - Almost cer
4 - High proba
3 - Potential

2 - Low probab
1 - Very unlik

RISK SCALE - I

5 - May cause
4 - May cause
3 - May cause
2 - May cause
1 - May cause

The risk level

a value of 10

impact.
IKELIHOOD

tain an incident will occur.

bility of an incident occurring.

of a security incident in the long term.
ility of an incident occurring.

ely issue will cause an incident.

MPACT

devastating and unrecoverable impact or loss.
a significant level of impact or loss.

a partial impact or loss to many.

temporary impact or loss.

minimal or un-noticeable impact.

is then calculated using a sum of these two values, creating
to 1 with 10 being the highest level of security risk.

CRITICAL

HIGH MEDIUM

10 - CRITICAL

9 - 8 - HIGH
7 - 6 - MEDIUM
5-4 - LOW

3-1-VERY L

OW AND INFORMATIONAL

11

EXECUTIVE OVERVIEW

1.4 SCOPE

The assessment was scoped to the repositories listed below:

® Y2K core, Rewards

commit: 96fdcf@2fa80e71c3a2e4d2cc78cbddcb3e120d3
contracts:

Controller.sol
SemiFungibleVault.sol

Vault.sol

VaultFactory.sol
IStakingRewards.sol

Owned.sol
RewardsDistributionRecipient.sol
StakingRewards. sol

®* Rewards Vault

® commit: 4e2df3275f94b9a6ed1cf0f642f3606a74afdaf4

contracts:

LockRewards.sol
ILockRewards.sol

®* Meérkle Distributor

commit: 9a2b109a2141b7e1d7795599c0b2382832cdc492
contracts:

MerkleDistributor.sol
MerkleProof.sol
IMerkleDistributor.sol

12

https://github.com/new-order-network/Y2K-smartcontracts/tree/96fdcf02fa80e71c3a2e4d2cc78cbddcb3e120d3
https://github.com/new-order-network/RewardsVault/tree/4e2df3275f94b9a6e01cf0f642f3606a74afdaf4
https://github.com/new-order-network/merkle-distributor/tree/9a2b109a2141b7e1d7795599c0b2382832cdc492

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW
0 0

LIKELIHOOD

-

(HAL-13)
(HAL-14)

(HAL-10)

(HAL-04)
(HAL-07) (HAL-01)
(HAL-08)

(HAL-05)

(HAL-11) e

(HAL-03)

III 5

13

EXECUTIVE OVERVIEW

SECURITY ANALYSIS RISK LEVEL

HAL-@1 MISSING CONTROLLER ADDRESS

VALIDATION ek

HAL-02 INTEGER UNDERFLOW - MISSING

FEE VALIDATION AR

HAL-03 RELOCKING OF ASSETS DOES NOT

WORK PROPERLY el

HAL-04 CLAIMED AMOUNTS ARE MAPPED

TO INDEXES IN MERKLE TREE Medium

HAL-@5 CONTRACT IS NOT PAUSED

DURING MERKLE ROOT UPDATE Hecilgl

HAL-06 ERC4626 DOES NOT WORK WITH

FEE-ON-TRANSFER TOKENS hteehiui

HAL-07 ORACLE CAN BE OVERWRITTEN ON

THE MARKET CREATION Medium

HAL-08 SHOULD CHECK RETURN DATA

FROM CHAINLINK AGGREGATORS Medium

HAL-09 FLOATING PRAGMA Low

HAL-10 MISSING PAUSE/UNPAUSE
FUNCTIONALITY ON THE LOCKREWARDS
CONTRACT

HAL-11 MISSING VALIDATION

HAL-12 IMPROPER ROLE BASED ACCESS
CONTROL

HAL-13 OWNER CAN WITHDRAW ALL TOKENS

HAL-14 MISSING RE-ENTRANCY
PROTECTION

HAL-15 LONG ERROR MESSAGES

HAL-16 OPTIMIZE UNSIGNED INTEGER
COMPARISON

REMEDIATION DATE

SOLVED -

‘ SOLVED -

05/26/2022

05/26/2022

14

EXECUTIVE OVERVIEW

HAL-17 PREFIX INCREMENTS ARE
CHEAPER THAN POSTFIX INCREMENTS

HAL-18 CHECK AMOUNT IS GREATER THAN
© TO AVOID UNNECESSARILY CALLING
SAFETRANSFER()

HAL-19 ROUNDING PROBLEMS IN THE EIP
4626 ()

HAL-20 EVENTS ARE NOT INDEXED

HAL-21 MISSING EVENTS ON CHANGES

HAL-22 UINT CAN’T BE LOWER THAN ZERO

HAL-23 NO NEED TO INITIALIZE
VARIABLES WITH DEFAULT VALUES

HAL-24 IMMUTABLE VARIABLES

15

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

3.1 (HAL-01) MISSING CONTROLLER
ADDRESS VALIDATION - MEDIUM

Description:

The createNewMarket function in VaultFactory.sol contract does not verify
that factory has controller address set. When setController function is
not called after creating VaultFactory, it is possible to create new
vaults without controller address configured. Users will be able to de-
posit assets to such vaults, but there will be no controller functionality
(ending epochs, triggering depeg events).

Code location:

68 function createNewMarket (

69 uint256 _fee,

70 address _token,

71 int256 _strikePrice,
72 uint256 epochBegin,
73 uint256 epochEnd,

74 address _oracle

75) public onlyAdmin“returns (address insr, address rsk) {
76 marketIndex += 1;

77

78 Vault insurance = new WVault(
79 WETH ,

80 "InsrY2K";

81 "Y2k",

82 treasupny

83 _fee,

84 _token,

85 _strikePrice,

86 controller

87)

88

89 Vault risk = new Vault(
90 WETH ,

91 "RiskY2K",

17

FINDINGS & TECH DETAILS

92 "Y2K",

93 treasury,

94 _fee,

95 _token,

96 _strikePrice,
97

98 E:

Proof of Concept:

Scenario:

1.

2.
3.
4

Create VaultFactory and Controller instances.

Do not call setController function on VaultFactory

Create new Vaults

Now it is not possible to trigger depeg or end epoch from controller.

Parts of Foundry script to simulate the scenario, first create VaultFac-

tory and Controller:

1 govToken =
2 vaultFactory

Then create Vaults, deposit USDC:

NewVaults(

1

2

3 address token,

4 int256 strikePrice,

5 uint256 epochBegin,

6 uint256 epochEnd,

7 address token_oracle

8) public returns (address insr, address risk) {
9 return

0

1 vaultFactory.createNewMarket (

18

FINDINGS & TECH DETAILS

11 fee,

12 token,

13 strikePrice,
14 epochBegin,
15 epochEnd,

16 token_oracle
17 E

18 }

19

20 function testAuditUserDepositsUSDC ()
21 public

Y returns (

23 uint256 1ID,

24 address _insr,

25 address _risk

26)

27 {

28 uint256 fee = 10;

29 int256 strikePrice

30 uint256 epochBegin 3 days from
L, now

31 uint256 epochEnd = // 30 days from

)
e (address(2), 1 ether, epochEnd, insr);
ress(3), 2 ether, epochEnd, risk);

insr, risk);
45 }

FINDINGS & TECH DETAILS

Then try to trigger a depeg event from controller:

1 // create vaults without setting controller, then try to trigger

L, depeg

2 function testAuditTriggerDepeg() public {

3 (

4 uint256 1ID,

5 address insr,

6 address risk

7) = testAuditUserDepositsUSDC();

8

9 vm.warp(ID - 20 days);

10

11 uint256 index = 1; //vaultFactory.mMarketIndex @5
12

13 vim.expectRevert ("You are not calling frem the Controller!");

14 controller.trigger‘Depeg(in“x, ID); ‘

16 emit log("Transaction reverted”)5
17 3}

The transaction is reverted, as there is no controller defined for the
vaults (controller address is 0x0).

Risk Level:
Likelihood - 3
Impact - 4
Recommendation:

It is recommended to validate if controller address was set in the Vault-
Factory during creation of the vaults - for example in createNewMarket
function of VaultFactory contract.

20

FINDINGS & TECH DETAILS

3.2 (HAL-02) INTEGER UNDERFLOW -
MISSING FEE VALIDATION - MEDIUM

Description:

Value of vault fee is not validated anywhere in Vault contract. When
administrator sets vault fee over 100%, it will trigger an underflow
error in beforeDeposit function, line 372 of Vault.sol. Calculated fee
value (which in this case is greater than deposit) is subtracted from the
number of shares deposited into the vault.

Code location:

Constructor:

90 constructor (

91 address assetAddressy;
92 string memorys name,
93 string memory _symbol],
94 address _“treasury,

95 uint256 _feea,

96 address _tokeny

97 imt256 JsitrikePricey
98 address “controller

99 9 SemiFungibleVault (ERC20'CassetAddress), _name, _symbol) {

100 tokenInsured =\ token;

101 ‘eTaken = _1";

102 treasury = _tYreasury;

103 strikePriced=" _strikePrice;
Nz Admin = mSg. sender;

105 idCounter = 0;

106 controller = _controller;
107 timewindow = 1 days;

108 }

Setter:

21

FINDINGS & TECH DETAILS

292 function changeFee(uint256 _fee) public onlyAdmin {

294 %

Fee calculation:

276 function calculateFeeValue(uint256 amount)

277 public

278 view

279 returns (uint256 feeValue)

280 {

281 // ©0.5% = multiply by 1000 then divi 5

282

283 } |!

beforeDeposit function is using calculated fee, causing underflow error:

366 function befa
367 internal

368 returns (uint
369 {
370

ferFrom(msg.sender, treasury, feeValue);

22

FINDINGS & TECH DETAILS

Proof of Concept:

The vault is created with vault fee set to 120%, then when user deposits

transaction is reverted with arithmetic error (underflow).

]
2

3 int256 strikePrice 120000000; //1% = 10000000

4 uint256 epochBegin = block.timestamp + 3 day

L, now

5 uint256 epochEnd = block.timestamp + 30 s; // 30 days
L, now

6 (address insr, address risk) = Cre

7 fee,

8 usbpc,

9 strikePrice,

10 epochBegin,

11 epochEnd,

12 USDC_oracle

13)

n

, user);

// swap to we

WETH (assetWE .deposit{value: amount}();

25

26 = ERC20(assetWETH).balanceOf (user);

27 ed_uint("User Balance before Deposit ", balance);
28

29 ERC20 (assetWETH) . approve(risk, amount);

30

31 // transaction should revert due to overflow

35 uint256 vaultBalance = ERC20(assetWETH).balanceOf (risk);

23

FINDINGS & TECH DETAILS

n

36 emit log_named_uint("”Vault Balance ", vaultBalance);
37

38 uint256 newbalance = ERC20(assetWETH).balanceOf (user);
39 emit log_named_uint("User Balance after Deposit"”, newbalance);
40
41 uint256 user_vaultbalance = Vault(risk).balanceOf (user, ID);
42 emit log_named_uint("User Vault Balance ", user_vaultbalance);
43
44 uint256 trzbalance = ERC20(assetWETH).balanceOf (tg€asury);
45 emit log_named_uint("”"Treasury Balance ", trzbalance);
46
47 // assert balances
48 assertEq(user_vaultbalance, 0);
49 assertEq(trzbalance, 0);
50 assertEg(balance, newbalance);
51
52 vm. stopPrank () ;
53 }
Risk Level:

Likelihood - 2
Impact - 5

Recommendation:

It is recommended to add boundary check for fee value. It should not be

possible to set fees over 100%.

24

FINDINGS & TECH DETAILS

3.3 (HAL-03) RELOCKING OF ASSETS
DOES NOT WORK PROPERLY - MEDIUM

Description:

The LockRewards contract allows the user to re-lock assets for another
epoch. However, during the audit it was found that, when the user re-
locks tokens for another epoch, he is able to withdraw re-locked tokens
before the end of the new epoch. Also, it was found that when a user
re-locks assets for another epoch, after the end of the new epoch he/she

will not receive a reward.

Proof of Concept:

Below is a Brownie test script, for the following scenario:
1. User locks tokens for one epoch (10 days).

2. In the middle of the epoch (5 days), user re-locks tokens.
3. User waits for first epoch to end, claims a reward

4. User tries to withdraw assets re-locked assets

Listing 10: (Lirr‘s—ﬂ 54-55,60)

1 def test_relock_one_epoch(newo, weth, deployer, owner, userl,

L, user29®

2

3 lockRewards "= preparetlockRewards (newo, weth, deployer, owner,
L, userl, user2)

4

5 # deposit ass@fs for 1 epoch

6 lockRewardsddeposit (10, 1, {'from': useril})

7

8 # set two, ten days long epochs

9 lockRewards.setNextEpoch (1@, 10, 10, {'from': owner})
10 lockRewards.setNextEpoch (1@, 10, 10, {'from': owner})
11

12 # asserts balances after deposits

13 assert(newo.balanceOf (user1) == 9990)

14 assert(weth.balanceOf (userl) == @)

15 assert(lockRewards.balanceOf (userl) == 10)

25

FINDINGS & TECH DETAILS

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

48
49
50
51
52
53

57/
58
59

assert current epoch == 1
assert(lockRewards.currentEpoch() == 1)
owner tries to withdraw locked tokens - should rever

with brownie.reverts():
lockRewards.withdraw (1@, {'from': useri})

wait half of epoch (5 days)

chain.sleep (86400 * 5)

chain.mine ()

owner tries to withdraw locked tqg revert

with brownie.reverts():
lockRewards.withdraw (1@, {'from':

poch ends

her epoch, current epoch should be updated
och (1@, 10, 10, {'from': owner})

for 1st epoch
imReward ({'from': userl1})

: ces after epoch ends and user claimed reward
asse .balanceOf (user1l) == 10000)

assert h.balanceOf (user1) == 10)

assert(lockRewards.balanceOf (user1l) == 10)

verify that assets were locked for another epoch and
user can't withdraw re-locked tokens - should revert
with brownie.reverts():

FINDINGS & TECH DETAILS

60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75

lockRewards.withdraw (1@, {'from': useri})

wait until end of epoch (10 days + 1 second)

chain.sleep (86400 * 10 + 1)
chain.mine ()

lockRewards.setNextEpoch (10, 10, 10, {'from':

lockRewards.claimReward ({'from': userl})
lockRewards.withdraw (10, {'from': userl})

assert balances after users withdrawn theig

assert(newo.balanceOf (userl) == 10020)
assert(weth.balanceOf (user1) == 20)
assert(lockRewards.balanceOf (userl) ==0)

assert(lockRewards.balanceOfInEpochdfuser?,
assert(lockRewards.balanceOfInEpoch'useri,

D)
2)

owner})

agssets

1

1
RN
~

FINDINGS & TECH DETAILS

The above test fails on the following step:

1 # verify that assets were locked for another epoch and
2 # user can't withdraw re-locked tokens - should revert
3 with brownie.reverts():

4 > lockRewards.withdraw (1@, {'from': userl})

5 E AssertionError: Transaction did not revertl

User is able to withdraw re-locked tokens before end of epoch
(balanceOfInEpoch returns that withdrawn tokens- are locked).

Risk Level:

Likelihood - 4
Impact - 3

Recommendation:

After re-locking assets for another epoch, user should not be able to
withdraw them before the end of the new epoch.

28

FINDINGS & TECH DETAILS

3.4 (HAL-04) CLAIMED AMOUNTS ARE
MAPPED TO INDEXES IN MERKLE TREE -
MEDIUM

Description:

MerkleDistributor contract is used to airdrop tokens to the users. To
keep track of which users already claimed tokens, contract maps the index
from the tree with already claimed amount.

NewOrder DAO implemented a possibility to update a Merkle Tree root. In
such case, it is crucial to keep indexes the same way in the new tree as
they were in the old one.

When Merkle Tree after update will have different index for the same
account, user may not be able to withdraw greater amount assigned in a
new tree or may be able to double claim the tokens.

Code location:

Mapping that stores already claimed amount:

10 contract MerklTeDistributory is IMerkleDistributor, Ownable {
11 address public) immutable override token;

12 bytes32 publie override merkleRoot;

13 Using SafeERC2@0 for IERC20;

14

15 ///Ninherit@oc IMerkleDistributor

16 mappMZSG => uint256) public override claimed;

Validation, if user already claimed tokens:

29

FINDINGS & TECH DETAILS

29 function claim(

o uiness andex,
31 address account,

32 uint256 amount,

33 bytes32[] calldata merkleProof

34) external override {

require (

"MerkleDistributor:

airdrop limi

39);

Proof of Concept:

Example Hardhat test case for double-claim scenario:

Initial tree contains two elements: wallet® and wallet1:

1 tree = new Ba eTree ([
2 { account: walle addres nt: BigNumber.from(100) 3},
BigNumber. from(101) 3},

3 { account: wallet
4])A

First user (wallet@) claims 100 tokens from the tree. Then the tree is

updated to contain three elements (in following order): walletl, wallet2,
walleto.

User (wallet@) as his index has changed from @ to 2 is now able to claim
additional 100 tokens:

1 describe("Update merkle root - different order in new tree”, () =>
L {

2 let newTree: BalanceTree;

3

30

FINDINGS & TECH DETAILS

4 beforeEach(async () => {

5 newTree = new BalanceTree ([

6

7

8

9 15

10 await token.setBalance(distributor.address, 101 + 100)
M1

12

13 it("claims again after updating merkle root: @
L, async ()=> {

14 const proof = tree.getProof (@0, wallet®.ad
L (100));
1 await expect(

16
17
18 .emit(distributor, "Claimed")
19 .withArgs (@, wallet@.address, BigNumbe om(100));
20
21
Ly
22
23 await distributor
L, getHexRoot());
24

25 const ne
L, BigNumber. from
26
27
Ly

dateMerkleRoot (newTree.

, wallet@.address,

await expect

.emit(dist
.withArgs (2

tor, "Claimed")

allet@.address, BigNumber.from(100));

34 1),

Risk Level:

Likelihood - 2

31

FINDINGS & TECH DETAILS

Impact - 4

Recommendation:

Consider tracking which user claimed tokens with different value,
user address.

like

32

FINDINGS & TECH DETAILS

3.5 (HAL-05) CONTRACT IS NOT PAUSED
DURING MERKLE ROOT UPDATE - MEDIUM

Description:

Contract is not paused during Merkle Root update, users can claim tokens
during an update.

Code location:

57 function updateMerkleRoot(bytes32 newMerkle public override
L. onlyOwner { y -

58 emit UpdateMerkleRoot (msg \sender jmmerkleRoot ," newMerkleRoot);
59 merkleRoot = newMerkleRoot;
60 }

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

Consider pausing contract for update of Merkle Tree root.

33

FINDINGS & TECH DETAILS

3.6 (HAL-06) ERC4626 DOES NOT WORK

WITH FEE-ON-TRANSFER TOKENS -
MEDIUM

Description:

The ERC4626.deposit/mint functions do not work well with fee-on-transfer

tokens as the amount variable is the pre-fee amount, including the fee,

whereas the totalAssets do not include the fee anymore.

Code location:

7

72
73
74
75
76

77

78
79

L,
80
81
82
83
84
85
86
87
88

function deposit(

) public virtu@l™returns (uint256 shares) {

L, previewDeposid.

L, ZERO_SHARES");

uint256 id,

uint256 assets,

address receiver

// Checkfor rounding error\since we round down in

n

require((sharesf = préwiewDeposit(id, assets)) != 0,

// Negdwto transfier before minting or ERC777s could

asset.saflelransferFrom(msg.sender, address(this), assets);

_mint(recgiver, id, shares, EMPTY);

emit Deposit(msg.sender, receiver, id, assets, shares);

afterDeposit(id, assets, shares);

34

FINDINGS & TECH DETAILS

Risk Level:
Likelihood - 3
Impact - 3
Recommendation:

amount should be the amount excluding the fee, i.e., the amount the
contract actually received. This can be done by subtracting the pre-
contract balance from the post-contract balance.

35

FINDINGS & TECH DETAILS

3.7 (HAL-07) ORACLE CAN BE
OVERWRITTEN ON THE MARKET
CREATION - MEDIUM

Description:

During the code, It has been noticed that the oracle can be overwritten
If the oracle is already existing on the market. Even if, the admin is
privileged on that function, the mistakenly defined oracle address can
break all previous markets.

Scenario:

® Create insurance for USDC call the CreateNewMarket function.

®* Than second time, Call CreateNewMarket With the USDC and wrong oracle
address.

®* USDC oracle address will be set wrong mistakenly. (You will overwrite
USDC oracle address)

Code Location:

Listinmctm‘

1

2 indexVaults[marketIndex] = [address(insurance), address(
L risk)];

3

4 insurange. createAssets (epochBegin, epochEnd);
5 riske.£reateAssets (epochBegin, epochEnd);

6

7 indexEpochs[marketIndex].push(epochEnd);

8 tokenToOracle[_token] = _oracle;

9

10 emit InsuranceMarketCreated/(

11 marketIndex,

12 address(insurance),

13 address(risk),

36

FINDINGS & TECH DETAILS

14 _token,
15 _strikePrice
16 K
17 ...
Risk Level:

Likelihood - 2
Impact - 4

Recommendation:

Consider implementing a statement If oracle is already set in the market

creation.

1 if(tokenToOracle[_token] addres
2 tokenToOracle[_token] = a g
3 }

Remediation Plan:

SOLVED: The NewOrderDAO Team solved this issue by implementing the sug-
gested check.

Commit ID: Commit

37

https://github.com/new-order-network/Y2K-smartcontracts/commit/e6a0f005c821604e65d01c118d55a146b4b6af59

FINDINGS & TECH DETAILS

3.8 (HAL-08) SHOULD CHECK RETURN
DATA FROM CHAINLINK AGGREGATORS -
MEDIUM

Description:

The getlLatestPrice function in the contract Controller.sol fetches the
asset price from a Chainlink aggregator using the latestRoundData func-
tion. However, there are no checks on roundID nor timeStamp, resulting in
stale prices. The oracle wrapper calls out to-a Chainlink oracle receiv-
ing the latestRoundData(). It then checks freshness by verifying that
the answer is indeed for the last known round. The returned updatedAt
timestamp is not checked.

If there is a problem with Chainlink starting a new round and finding
consensus on the new value for the oracle (e.g. Chainlink nodes abandon
the oracle, chain congestion, vulnerability/attacks on the Chainlink
system) consumers of this contract may continue using outdated stale data
(if oracles are unable to submit no new round is started).

Code Location:

Listigg¥6, Covbi@hler. sV,

i€y int256 price, \,\,) = priceFeed.latestRoundData();

Risk Level:

Likelihood - 2
Impact - 4

38

FINDINGS & TECH DETAILS

Recommendation:

Consider adding checks on the return data with proper revert messages if
the price is stale or the round is incomplete, for example:

(uint8@ roundID, int256 price, , uint256 timeStamp, uint8@
answeredInRound) = ETH_CHAINLINK.latestRoundData();
require(price > @, "Chainlink price <= 0");
require(answeredInRound >= roundID, "...");

~ w o v -

require(timeStamp != @, "...");

Remediation Plan:

SOLVED: The NewOrderDAO Team solved this issue by implementing the sug-
gested check.

Commit ID: Commit

https://github.com/new-order-network/Y2K-smartcontracts/commit/15f62c0e684b336dc27ae0162995667f9eb7e0db

FINDINGS & TECH DETAILS

3.9 (HAL-09) FLOATING PRAGMA - LOW

Description:

Smart contract uses the floating pragma. Contracts should be deployed
with the same compiler version and flags that they have been tested
with thoroughly. Locking the pragma helps to ensure that contracts
do not accidentally get deployed using, for example, either an outdated
compiler version that might introduce bugs that affect the contract system
negatively or a pragma version too new which has not been extensively
tested.

Code location:

VaultFactory.sol, line: 2

Vault.sol, line: 2

IStakingRewards.sol, line: 1

Owned.sol, line: 1
RewardsDistributionRecipient.sol, line: 1
StakingRewards.sol, line: 1
LockRewards.sol, line: 2
ILockRewards.sol, line: 2

Risk Level:
Likelihood - 4
Impact - 1
Recommendation:

Consider lock the pragma version, known bugs for the compiler version.
When possible, do not use floating pragma in the final live deployment.
Apart from just locking the pragma version in the code, removing the

caret (7).

40

FINDINGS & TECH DETAILS

3.10 (HAL-10) MISSING PAUSE/UNPAUSE
FUNCTIONALITY ON THE LOCKREWARDS
CONTRACT - LOW

Description:

In case a hack is occurring, or an exploit is discovered, the team
should be able to pause functionality until the necessary changes
are made to the system. To use a thorchain example again, the team
behind thorchain noticed an attack was going to occur well before the
system transferred funds to the hacker. However, they were not able to
shut the system down fast enough. (According to the incidence report here:

https://github.com/HalbornSecurity/PublicReports/blob/master/Incident%20Reports/Tho

Incident_Analysis_July_23_2021.pdf)

Code location:

LockRewards.sol, line: 2
ILockRewards.sol, line: 2

Risk Level:
Likelihood - 1
Impact - 3
Recommendation:

Pause functionality on the contract would have helped secure the funds
quickly.

41

FINDINGS & TECH DETAILS

3.11 (HAL-11) MISSING VALIDATION -
LOW

Description:

During the code review, it was observed that the setter functions did not
properly validate that new values for parameters are valid. For instance,
in the LockRewards contract admin might be able to set epoch duration in
days to a large value, which may cause user assets to get locked for an
extensive period of time, or may lead to overflows. Rewards in LockRewards
token are paid in two different tokens, but there is no validation the
tokens are different. Also, smart contracts do not validate that new
addresses for controller, treasury etc are not zero address (0x0).

Code Location:

Missing Zero address checks:

1. Y2K-smartcontracts/src/VaultFactory.sol, #152-154
2. Y2K-smartcontracts/src/VaultFactory.sol, #50

3. Y2K-smartcontracts/src/VaultFactory.sol, #176

4. Y2K-smartcontracts/src/Vault.sol, #297

5. RewardsVault/contracts/LockRewards.sol, #64,65

Both Reward tokens can be set to the same address:

Li‘ZZ: Rewards\‘lt/contracts/LockRewards.sol (Lines 64,65)

constructor (
address _logkToken,
address n.asewardAddri ,
address“_ rewardAddr2,
uint256 _maxEpochs

) {
lockToken = _lockToken;
rewardToken[@].addr = _rewardAddri;
rewardToken[1].addr = _rewardAddr2;
maxEpochs = _maxEpochs;

3

FINDINGS & TECH DETAILS

Epoch duration validation:

The epochDurationInDays parameter is not validated, epoch may be set to
very long time. On line 415, number of days is multiplied by number of

seconds in a day, which may cause an overflow.

385 function _setEpoch(
386 uint256 reward?l,
387 uint256 reward2,
388

389 uint256 epochStart

390) internal {

391 if (nextUnsetEpoch - currentEp

392 revert EpochMaxReached (2);

393 if (epochStart < block.timestamp)

394 revert EpochStartInvalid(epochSt block.timestamp);

395

396 uint256[2] memory rewe 1;

397

398 for (uint256 i = @; i

399 uint256 i oken[i].rewards -
L, rewardToken[i].re

400 uin ewardToken[i]. addr).

L, balanceOf (add
401
unclaimed < rewards[il])
nsufficientFundsForRewards (rewardToken[i].

rewards[i]);

oken[i].rewards += rewards[i];

= nextUnsetEpoch;

410
L, finish + 1) {

411 epochs[next].start = epochStart;

412 } else {

413 epochs[next].start = epochs[next - 1].finish + 1;

414 }

415
L

urrentEpoch == next || epochStart > epochs[next - 1].

FINDINGS & TECH DETAILS

416

L, start, epochs[next].finish);
423 3}

417 epochs[next].rewardsl = rewardl;
418 epochs[next].rewards2 = reward2;
419 epochs[next].isSet = true;

420

421 nextUnsetEpoch += 1;

422 emit SetNextReward(next, rewardl,

reward2, epochs[aext].

Risk Level:

Likelihood - 2
Impact - 3

Recommendation:

Halborn recommends that validation is added to the setter functions,

throughout all the smart contracts.

At a minimum,

ensure that these values cannot be set to zero.

NewOrderDAO should

44

FINDINGS & TECH DETAILS

3.12 (HAL-12) IMPROPER ROLE BASED
ACCESS CONTROL - LOW

Description:

The smart contracts, in scope, do not implement granular access control.
All the privileged functionality was assigned to one account, the owner
of the smart contract. This could lead to serious consequences should
the ownership of this account be lost, or a malicious admin decided to
take over the platform.

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

Halborn recommends that a more granular access control policy is enforced.
For instance, the following user roles could be set:

®* Pauser - user who can pause the contracts

Owner - admin of the contract which can access the most sensitive

functionality

®* ChangeWhitelist role - user who can add or remove tokens from the
whitelist

45

FINDINGS & TECH DETAILS

3.13 (HAL-13) OWNER CAN WITHDRAW
ALL TOKENS - LOW

Description:

In LockRewards contract, the owner can withdraw all funds via
changeRecoverWhitelist and recoverERC20 functions.

Code location:

312 function recoverERC20 (address tokenAddres 6 tokenAmount)
L, external onlyOwner {

313 if (whitelistRecoverERC20 [s#ekenAddress] == se) revert
L, NotWhitelisted();

314

315 uint balance = IERC20(token (address(this));

316 if (balance < tokenAmount) re sufficientBalance ();

317

318

319 edERC20 (¢ tokenAmount) ;

320 }

verWhitelist (address tokenAddress, bool flag)

OWhiltelist (tokenAddress, flag);

Recommendation:

Consider disabling possibility for the owner to withdraw all tokens
deposited by the users.

46

FINDINGS & TECH DETAILS

3.14 (HAL-14) MISSING RE-ENTRANCY
PROTECTION - LOW

Description:

To protect against cross-function re-entrancy attacks, it may be necessary
to use a mutex. By using this lock, an attacker can no longer exploit
the function with a recursive call. OpenZeppelin has its own mutex
implementation called ReentrancyGuard which provides a modifier to any
function called “nonReentrant” that guards the function with a mutex
against the Reentrancy attacks.

Code location:

55 function deposit(

56 uint256 id,

57 uint256 assetsg

58 address recedver

59) public virtlreturns'intZSG s‘es) {

60 // Check TQEWroundig@ emeor sincepwe round down in

L, previewDeposit.

61 require ((sharesi=\previewDeposit(id, assets)) != o, "

L. ZERQLSHARES™");

62

63 // Need to tWamnsfer before minting or ERC777s could reenter.
64 asset.safeTransferFrom(msg.sender, address(this), assets);
65

66 _mint(receiver, id, shares, EMPTY);

67

68 emit Deposit(msg.sender, receiver, id, assets, shares);

69

70 afterDeposit(id, assets, shares);

71 }

47

FINDINGS & TECH DETAILS

Recommendation:

Functions of SemiFungibleVault contract are missing nonReentrant
guard. Though, these methods are implemented following checks-effects-
interactions pattern only. But in longer term it is better to use
“nonReentrant” guard to avoid unfortunate event in future due to code
changes.

48

FINDINGS & TECH DETAILS

3.15 (HAL-15) LONG ERROR MESSAGES -
INFORMATIONAL

Description:

Some of the error messages in require statements of MerkleDistributor
contract exceed 32 bytes.
Error messages longer than 32-bytes consume additional gas.

Code location:

29 function claim(

30 uint256 index,
31 address account,
32 uint256 amount,
33 bytes32[] ca

34) external o
35
36
37
38
39

ed[index];

Recommendation:

Consider shorter error messages to save gas.

49

FINDINGS & TECH DETAILS

3.16 (HAL-16) OPTIMIZE UNSIGNED
INTEGER COMPARISON - INFORMATIONAL

Description:

The check != @ costs less gas compared to > @ for unsigned integers in
require statements with the optimizer enabled.

While it may seem that > @ is cheaper than !=0, this is only true without
the optimizer enabled and outside a require statement. If the optimizer
is enabled at 10k, and It is in a require statement, that would be more
gas efficient.

Code location:

107 function stake(uint256 amount)

108 external

109 nonReentrangd

110 whenNotPaused

111 updateReward(msg./;sender)

112 {

113 require Camount > @, "Cannotrstake 0");
114 _totalSupply = _totalSupply.add(amount);
115 “balanees[msg.sender] = _balances[msg.sender].add(amount);
116 stakingToken.safeTransferFrom(

117, msg.sender ,

118 address(this),

119 id,

120 amoun't,

121 "

122);

123 emit’ Staked(msg.sender, id, amount);

124 3}

Recommendation:

Change > @ comparison with != 0.

50

FINDINGS & TECH DETAILS

3.17 (HAL-17) PREFIX INCREMENTS ARE
CHEAPER THAN POSTFIX INCREMENTS -
INFORMATIONAL

Description:

Prefix increments are cheaper than postfix increments.

Furthermore, using unchecked {++x} is even more gas efficient, and the
gas saving accumulates every iteration and can make a real change. There
is no risk of overflow caused by incrementing the iteration index in for
loops (the ++i in for (uint256 i = @; i < numlterations; ++i)). But
increments perform overflow checks that are not necessary in this case.

Code location:

Listing 29: LockRewards.sol ‘ h

224 for (uint256 i @; in< lockEpochs; i++) {

225 epochis[i + next].totalllocked += newBalance - epochs[i
L, + next].balang€locked[msg.sender];

226 epochs[i + mexta.balancellocked[msg.sender] =

L, newBalance;

227 }

Recommendation:

Consider using prefix increments.

51

FINDINGS & TECH DETAILS

3.18 (HAL-18) CHECK AMOUNT IS
GREATER THAN @ TO AVOID
UNNECESSARILY CALLING
SAFETRANSFER() - INFORMATIONAL

Description:

A check should be added to make sure amount exceeds @ to avoid unneces-
sarily calling safeTransfer().

Code location:

29 function claim(
30 uint256 index,
31 address ag€ount
32 uint2564amount ,
33 bytes82L] calldata merkleProof
34) external “overridef {
35 uint256 alreadyClaimed =“elaimed[index];
36 require (
37 amount > alreadyClaimed,
38’ "M eDist‘or: airdrop limit reached”
39 E
Recommendation:

Implement amount > @ check in the related sections.

52

FINDINGS & TECH DETAILS

3.19 (HAL-19) ROUNDING PROBLEMS IN
THE EIP 4626 - INFORMATIONAL

Description:

Per EIP 4626’s Security Considerations (https://eips.ethereum.org/EIPS/eip-
4626), several important points are marked out. During the
implementation, NewOrderDAO should consider the following items

Finally, ERC-4626 Vault implementers sho@ild be aware of the need

for specific, opposing rounding directions, across gthe different

mutable and view methods, as it is considered m@st secure to favor
the Vault itself during calculations over its Users:

- If (1) its calculating how many. shares to issue te a user for a
certain amount of the underlying\ tokens they provide or (2) its
determining the amount of the underlyingé tokens, to transfer to
them for returning a certain amolUnt off shares, it should round
down .
- If (1) its calculating ‘the amounti of shares a user has to supply
to receive aggiven amount of the underlying tokens or (2) its
calculating the amount ©Of Umderlying Wtokens a user has to provide

R N 2 SR N R A A

to receive a certaindmount of “share€s, it should round up.

Recommendation:

NewOrderDAO Team should be aware of the rounding issues in the
SemiFungibleVault.

53

FINDINGS & TECH DETAILS

3.20 (HAL-20) EVENTS ARE NOT
INDEXED - INFORMATIONAL

Description:

The emitted events are not indexed, making off-chain scripts such as
front-ends of DApps difficult to filter the events efficiently.

Recommendation:

Add the indexed keyword in each event.

54

FINDINGS & TECH DETAILS

3.21 (HAL-21) MISSING EVENTS ON
CHANGES - INFORMATIONAL

Description:

Function performing important changes to contract state should emit events
to facilitate monitoring of the protocol operation.

Code Location:

Reference

Recommendation:

Consider omitting events on the related functions.

55

https://github.com/new-order-network/Y2K-smartcontracts/blob/96fdcf02fa80e71c3a2e4d2cc78cbddcb3e120d3/src/rewards/RewardsDistributionRecipient.sol#L20

FINDINGS & TECH DETAILS

3.22 (HAL-22) UINT CAN’T BE LOWER
THAN ZERO - INFORMATIONAL

Description:

Uint value can’t be lower than @, therefore the condition: amount <= 0
can be changed to amount == 0.

Code Location:

Reference

Recommendation:

Consider changing the condition to amount == @ || accounts[msg.sender].

balance < amount.

56

https://github.com/new-order-network/RewardsVault/blob/4e2df3275f94b9a6e01cf0f642f3606a74afdaf4/contracts/LockRewards.sol#L432

FINDINGS & TECH DETAILS

3.23 (HAL-23) NO NEED TO INITIALIZE
VARIABLES WITH DEFAULT VALUES -
INFORMATIONAL

Description:

uint256 variable is initialized to a default value of zero per Solidity
docs. Setting a variable to the default value is unnecessary.

Code Location:

1 uint256 public periodFinishp= 0;
2 uint256 public rewardRate\(="0;
Recommendation:

Remove explicit initialization for default values.

57

https://docs.soliditylang.org/en/latest/control-structures.html#default-value

FINDINGS & TECH DETAILS

3.24 (HAL-24) IMMUTABLE VARIABLES -
INFORMATIONAL

Description:

There are variables that do not change, so they can be marked as immutable
to greatly improve the gas costs.

Code Location:

1 ERC20 public rewardsToken;
2 IERC1155 public stakingToken;
Recommendation:

Consider marking state variables as an immutable that never changes on
the contract.

58

AUTOMATED TESTING

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-
tain areas of the scoped contracts. Among the tools used was Slither, a
Solidity static analysis framework. After Halborn verified all the con-
tracts in the repository and was able to compile them correctly into their
abi and binary formats, Slither was run on the all-scoped contracts. This
tool can statically verify mathematical relationships between Solidity
variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

To reduce the report size, Informational and Optimization findings
reported by Slither were omitted.

MerkleDistributor:

Listing 34 l ' ‘

MerkleProof.verify(bytes32[],bytes32,bytes32) (contracts/
L, MerkleProof.sol#13-30) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector -
L, Documentation#dead-code

MerkleDistributor.constructor (address,bytes32,address).token_ (
L, contracts/MerkleDistributor.sol#19) lacks a zero-check on
- token = token_ (contracts/MerkleDistributor.sol#23)
Reference: https://github.com/crytic/slither/wiki/Detector -
L, Documentation#missing-zero-address-validation

Reentrancy in MerkleDistributor.claim(uint256,address,uint256,
L, bytes32[]) (contracts/MerkleDistributor.sol#29-54):
External calls:
- IERC20(token).safeTransfer (account,airdropAmount) (contracts
L, /MerkleDistributor.sol#51)
Event emitted after the call(s):
- Claimed(index,account,airdropAmount) (contracts/

60

AUTOMATED TESTING

MerkleDistributor.sol#53)
Reentrancy in MerkleDistributor.withdrawToken (address,uint256) (
contracts/MerkleDistributor.sol#63-76):

External calls:

- IERC20(token).safeTransfer(to,amount) (contracts/
MerkleDistributor.sol#74)

Event emitted after the call(s):

- WithdrawToken(msg.sender,to,amount) (contracts/
MerkleDistributor.sol#75)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -3

Address.verifyCallResult (bool, bytes,string) (../../../.brownie/
packages/OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/utils
/Address.sol#201-221) uses assembly

- INLINE ASM (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/utils/Address.sol#213-216)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#assembly-usage

Different versions of Solidity are used:
- Version used: ['=0.8.4', '>=0.5.0', '“0.8.0', '70.8.1']
- *0.8.0 (../../../.brownie/packages/OpenZeppelin/openzeppelin
-contracts@4.6.0/contracts/access/Ownable.sol#4)
- *0.8.0 (../../../.brownie/packages/OpenZeppelin/openzeppelin
-contracts@4 .6.0/contracts/token/ERC20/IERC20.so0l#4)
- *0.8.0 (../../../.brownie/packages/OpenZeppelin/openzeppelin
-contracts@4 .6
(
6
(

- "0.8.1

.0/contracts/token/ERC20/utils/SafeERC20.so0l#4)
./../../.brownie/packages/OpenZeppelin/openzeppelin
-contracts@4.6.0/contracts/utils/Address.sol#4)

- "0.8.0 ./../../.brownie/packages/OpenZeppelin/openzeppelin
-contracts@4.6.0/contracts/utils/Context.sol#4)

- =0.8.4 (contracts/MerkleDistributor.sol#2)

- =0.8.4 (contracts/MerkleProof.sol#1)

- >=0.5.0 (contracts/interfaces/IMerkleDistributor.sol#2)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#different -pragma-directives-are-used

Address. functionCall (address,bytes) (../../../.brownie/packages/
OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/utils/Address.
sol#85-87) is never used and should be removed

Address. functionCallWithValue (address,bytes,uint256) (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#114-120) is never used and should be

61

AUTOMATED TESTING

removed
Address. functionDelegateCall (address,bytes) (../../../.brownie/
packages/OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/utils
/Address.sol#174-176) is never used and should be removed
Address. functionDelegateCall (address,bytes,string) (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#184-193) is never used and should be
removed
Address. functionStaticCall (address,bytes) (../../../.brownie/
packages/OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/utils
/Address.sol#147-149) is never used and should be removed
Address.functionStaticCall (address,bytes,string) (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#157-166) is never used and should be
removed
Address.sendValue (address,uint256) (../../../.brownie/packages/
OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/utils/Address.
sol#60-65) is never used and should be removed
Context._msgData() (../../../:brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/utils/Context.sol#21-23) is
never used and should be removed
SafeERC20.safeApprove (IERC20, address,uint256) (../../../.brownie/
packages/OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/token
/ERC20/utils/SafeERC20.s0l#45-58) is never used and should be
removed
SafeERC20.safeDecreaseAllowance (IERC20, address,uint256)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/token/ERC20/utils/SafeERC20.s0l1#69-80) is never
used and should be removed
SafeERC20.safelncreaseAllowance (IERC20, address,uint256)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/token/ERC20/utils/SafeERC20.s0l#60-67) is never
used and should be removed
SafeERC20.safeTransferFrom(IERC20 , address,address,uint256)
(../../7../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/token/ERC20/utils/SafeERC20.s0l1#29-36) is never
used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#dead-code

Pragma version*0.8.0 (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/access/Ownable.sol#4)
allows old versions

Pragma version”0.8.0 (../../../.brownie/packages/OpenZeppelin/

62

AUTOMATED TESTING

N

R

c

openzeppelin-contracts@4 .6.0/contracts/token/ERC20/IERC20.sol#4)
allows old versions

Pragma version”0.8.0 (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/token/ERC20/utils/SafeERC20
.sol#4) allows old versions

Pragma version*0.8.1 (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/utils/Address.sol#4) allows
old versions

Pragma version”0.8.0 (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/utils/Context.sol#4) allows
old versions

Pragma version>=0.5.0 (contracts/interfaces/IMerkleDistributor.sol

#2) allows old versions

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#incorrect-versions-of-solidity

Low level call in Address.sendValue (address,uint256) (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#60-65) :

- (success) = recipient.call{value: amount}() (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#63)

Low level call in Address.functionCallWithValue (address, bytes,
uint256 ,string) (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/utils/Address.sol#128-139):

- (success,returndata) = target.call{value: value}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

Low level call in Address.functionStaticCall (address,bytes,string)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
:6.0/contracts/utils/Address.sol#157-166) :

- (success,returndata) = target.staticcall(data) (../../../.
brownie/packages/0OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#164)

Low level call in Address.functionDelegateCall (address, bytes,
string) (../../../.brownie/packages/OpenZeppelin/openzeppelin-
contracts@4.6.0/contracts/utils/Address.sol#184-193):

- (success,returndata) = target.delegatecall(data) (../../../.
brownie/packages/OpenZeppelin/openzeppelin-contracts@4.6.0/
contracts/utils/Address.sol#191)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#low-level -calls

renounceOwnership () should be declared external:

63

AUTOMATED TESTING

69

70

71

72
73

74

75

- Ownable.renounceOwnership() (../../../.brownie/packages/
OpenZeppelin/openzeppelin-contracts@4.6.0/contracts/access/Ownable
.sol#54-56)
updateMerkleRoot (bytes32) should be declared external:

- MerkleDistributor.updateMerkleRoot (bytes32) (contracts/
MerkleDistributor.sol#57-60)
withdrawAllTokens (address) should be declared external:

- MerkleDistributor.withdrawAllTokens (address) (contracts/
MerkleDistributor.sol#79-81)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#public-function-that-could-be-declared-external
contracts/ analyzed (9 contracts with 78 detectors), 31 result(s)
found

V' _

64

AUTOMATED TESTING

RewardsVault:

Listing 35

L

c

c

c

Reentrancy in LockRewards.exit() (contracts/LockRewards.sol
#251-254):

External calls:

- _withdraw(accounts[msg.sender].balance) (contracts/
LockRewards.sol#252)

- returndata = address(token).functionCall (data,SafeERC20:
low-level call failed) (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/token/ERC20/utils/SafeERC20

.sol#93)

- (success,returndata) = target.call{value: valuel}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- IERC20(lockToken).safeTransfer (msg.sender ,amount) (
contracts/LockRewards.sol#435)

- _claim() (contracts/LockRewards.sol#253)

- returndata = address(token).functionCall (data,SafeERC20:
low-level call failed) (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/token/ERC20/utils/SafeERC20

.sol#93)

- IERC20(rewardToken[0].addr).safeTransfer (msg.sender,
rewardl) (contracts/LockRewards.sol#454)

- (success,returndata) = target.call{value: value}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- IERC20(rewardToken[1].addr).safeTransfer (msg.sender,
reward2) (contracts/LockRewards.sol#459)

External calls sending eth:
- _withdraw(accounts[msg.sender].balance) (contracts/
LockRewards.sol#252)

- (success,returndata) = target.call{value: value}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- _claim() (contracts/LockRewards.sol#253)

- (success,returndata) = target.call{value: valuel}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

State variables written after the call(s):
- _claim() (contracts/LockRewards.sol#253)

- accounts[msg.sender].rewardsl = @ (contracts/LockRewards
.sol#453)

- accounts[msg.sender].rewards2 = @ (contracts/LockRewards

65

AUTOMATED TESTING

sol
Reference https github com

crytic slither wiki Detector

Documentation reentrancy vulnerabilities

Reentrancy in LockRewards _claim contracts LockRewards sol

External calls

IERC20 rewardToken addr safeTransfer msg sender rewardl

contracts LockRewards sol

State variables written after the call s

accounts msg sender rewards2 contracts LockRewards sol

Reentrancy in LockRewards _withdraw uint256 contracts

LockRewards sol
External calls

IERC20 lockToken safeTransfer msg sender amount contracts

LockRewards sol

State variables written after the call s

accounts msg sender balance amount contracts

LockRewards sol

Reentrancy in LockRewards deposit uint256 uint256 contracts

LockRewards sol
External calls
1Token safeTransferFrom
contracts LockRewards sol

msg sender address this amount

State variables written after the call s

accounts msg sender balance amount contracts

LockRewards sol

epochs 1 next totallLocked newBalance epochs i next

balancelLocked msg sender

contracts LockRewards sol

epochs i next balancelLocked msg sender newBalance

contracts LockRewards sol

Reference https github com crytic slither wiki Detector

Documentation reentrancy vulnerabilities

LockRewards balanceOf address
shadows
Ownable owner
openzeppelin contractse4
function
LockRewards balanceOfInEpoch
LockRewards sol shadows
Ownable owner
openzeppelin contracts@4

owner contracts LockRewards sol

brownie packages OpenZeppelin
contracts access Ownable sol

address uint256 owner contracts

brownie packages OpenZeppelin
contracts access Ownable sol

AUTOMATED TESTING

function)
LockRewards.getAccount (address).owner (contracts/LockRewards.sol
#154) shadows:

- Ownable.owner() (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/access/Ownable.sol#35-37) (
function)

LockRewards._getAccount (address).owner (contracts/LockRewards.sol
#470) shadows:

- Ownable.owner() (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/access/Ownable.sol#35-37) (
function)

LockRewards.updateReward(address).owner (contracts/LockRewards.sol
#520) shadows:

- Ownable.owner() (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4 .6.0/contracts/access/Ownable.sol#35-37) (
function)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#local-variable-shadowing

LockRewards.constructor (address , address , address ,uint256) .
_lockToken (contracts/LockRewards.sol#58) lacks a zero-check on
- lockToken = _lockToken (contracts/LockRewards.sol#63)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

Reentrancy in LockRewards._withdraw(uint256) (contracts/
LockRewards.sol#431-439):

External calls:

- IERC20(lockToken).safeTransfer (msg.sender,amount) (contracts
/LockRewards.sol#435)

State variables written after the call(s):

- totalAssets -= amount (contracts/LockRewards.sol#436)
Reentrancy in LockRewards.deposit(uint256,uint256) (contracts/
LockRewards.sol#187-228):

External calls:

- 1lToken.safeTransferFrom(msg.sender,address(this),amount) (
contracts/LockRewards.sol#212)

State variables written after the call(s):

- totalAssets += amount (contracts/LockRewards.sol#213)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -2

Reentrancy in LockRewards._claim() (contracts/LockRewards.sol
#448-463) :

67

AUTOMATED TESTING

External calls:
- IERC20(rewardToken[@]. addr).safeTransfer (msg.sender,rewardl)
(contracts/LockRewards.sol#454)

Event emitted after the call(s):

- RewardPaid(msg.sender ,rewardToken[@]. addr,rewardl) (
contracts/LockRewards.sol#455)

Reentrancy in LockRewards._claim() (contracts/LockRewards.sol
#448-463) :
External calls:
- IERC20(rewardToken[@].addr).safeTransfer (msg.sender ,rewardl)
(contracts/LockRewards.sol#454)
- IERC20(rewardToken[1].addr).safeTransfer(msg.sender,reward?2)
(contracts/LockRewards.sol#459)

Event emitted after the call(s):

- RewardPaid(msg.sender ,rewardToken[1].addr,reward2) (
contracts/LockRewards.sol#460)

Reentrancy in LockRewards._withdraw(uint256) (contracts/
LockRewards.sol#431-439):

External calls:

- IERC20(lockToken).safeTransfer(msg.sender ,amount) (contracts
/LockRewards.sol#435)

Event emitted after the call(s):

- Withdrawn(msg.sender ,amount) (contracts/LockRewards.sol#438)
Reentrancy in LockRewards.deposit(uint256,uint256) (contracts/
LockRewards.sol#187-228):

External calls:

- 1Token.safeTransferFrom(msg.sender ,address(this),amount) (
contracts/LockRewards.sol#212)

Event emitted after the call(s):

- Deposit(msg.sender ,amount,accounts[msg.sender].lockEpochs) (
contracts/LockRewards.sol#216)

Reentrancy in LockRewards.exit() (contracts/LockRewards.sol
#251-254):

External calls:

- _withdraw(accounts[msg.sender].balance) (contracts/
LockRewards .sol#252)

- returndata = address(token).functionCall (data,SafeERC20:
low-level call failed) (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/token/ERC20/utils/SafeERC20

.sol#93)

- (success,returndata) = target.call{value: valuel}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- IERC20(lockToken).safeTransfer (msg.sender,amount) (

68

AUTOMATED TESTING

contracts/LockRewards.sol#435)
- _claim() (contracts/LockRewards.sol#253)

- returndata = address(token).functionCall (data,SafeERC20:
low-level call failed) (../../../.brownie/packages/OpenZeppelin/
openzeppelin-contracts@4.6.0/contracts/token/ERC20/utils/SafeERC20

.sol#93)

- IERC20(rewardToken[0]. addr).safeTransfer (msg.sender,
rewardl) (contracts/LockRewards.sol#454)

- (success,returndata) = target.call{value: value}(data)
(../7../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- IERC20(rewardToken[1].addr).safeTransfer (msg.sender,
reward2) (contracts/LockRewards.sol#459)

External calls sending eth:
- _withdraw(accounts[msg.sender].balance) (contracts/
LockRewards.sol#252)

- (success,returndata) = target.call{value: valuel}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

- _claim() (contracts/LockRewards.sol#253)

- (success,returndata) = target.call{value: value}(data)
(../../../.brownie/packages/OpenZeppelin/openzeppelin-contracts@4
.6.0/contracts/utils/Address.sol#137)

Event emitted after the call(s):
- RewardPaid(msg.sender,rewardToken[@]. addr,rewardl) (
contracts/LockRewards.sol#455)

- _claim() (contracts/LockRewards.sol#253)

- RewardPaid(msg.sender,rewardToken[1].addr,reward2) (
contracts/LockRewards.sol#460)

- _claim() (contracts/LockRewards.sol#253)

Reentrancy in LockRewards.recoverERC20 (address,uint256) (contracts
/LockRewards.sol#312-320):

External calls:

- IERC20(tokenAddress).safeTransfer (owner (), tokenAmount) (
contracts/LockRewards.sol#318)

Event emitted after the call(s):

- RecoveredERC20 (tokenAddress, tokenAmount) (contracts/
LockRewards.sol#319)
Reentrancy in LockRewards.recoverERC721 (address,uint256) (
contracts/LockRewards.sol#341-344):

External calls:

- IERC721(tokenAddress).transferFrom(address(this),owner (),
tokenId) (contracts/LockRewards.sol#342)

Event emitted after the call(s):

69

AUTOMATED TESTING

121
L,
122
L,
123
124
L
125
126
127
N
128
L,
129
L,

- RecoveredERC721 (tokenAddress, tokenId) (contracts/LockRewards
.sol#343)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -3

LockRewards. _setEpoch(uint256 ,uint256 ,uint256 ,uint256) (contracts/
LockRewards.sol#385-423) uses timestamp for comparisons
Dangerous comparisons:
- epochStart < block.timestamp (contracts/LockRewards.sol#393)
- currentEpoch == next || epochStart > epochs[next - 1].finish
+ 1 (contracts/LockRewards.sol#410)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp
contracts/ analyzed (10 contracts with 57 detectors), 20 result(s)
found

70

AUTOMATED TESTING

Staking Rewards:

Listing 36

StakingRewards.notifyRewardAmount (uint256) (src/rewards/
L, StakingRewards.sol#154-181) performs a multiplication on the
L, result of a division:

-rewardRate = reward.div(rewardsDuration) (src/rewards/
L, StakingRewards.sol#161)
-leftover = remaining.mul (rewardRate) (src/rewards/

L, StakingRewards.sol#164)
Reference: https://github.com/crytic/slither/wiki/Detector -
L, Documentation#divide-before-multiply

Reentrancy in StakingRewards.exit() (src/rewards/StakingRewards.
L, sol#147-150):
External calls:
- withdraw(_balances[msg.sender]) (src/rewards/StakingRewards.
L, sol#148)
- stakingToken.safeTransferFrom(address(this),msg.sender,
L, id,amount,) (src/rewards/StakingRewards.sol#128-134)
State variables written after the call(s):
- getReward() (src/rewards/StakingRewards.sol#149)
- _status = _ENTERED (lib/openzeppelin-contracts/contracts
L, /security/ReentrancyGuard.sol#55)
- _status = _NOT_ENTERED (lib/openzeppelin-contracts/
L, contracts/security/ReentrancyGuard.sol#61)
- getReward() (src/rewards/StakingRewards.sol#149)
- lastUpdateTime = lastTimeRewardApplicable() (src/rewards
L, /StakingRewards.sol#209)
- getReward() (src/rewards/StakingRewards.sol#149)
- rewardPerTokenStored = rewardPerToken() (src/rewards/
L, StakingRewards.sol#208)
- getReward() (src/rewards/StakingRewards.sol#149)
- rewards[msg.sender] = @ (src/rewards/StakingRewards.sol
L #141)
- rewards[account] = earned(account) (src/rewards/
L, StakingRewards.sol#211)
- getReward() (src/rewards/StakingRewards.sol#149)
- userRewardPerTokenPaid[account] = rewardPerTokenStored (
L, src/rewards/StakingRewards.sol#212)
Reference: https://github.com/crytic/slither/wiki/Detector -
L, Documentation#reentrancy-vulnerabilities-1

RewardsDistributionRecipient.setRewardsDistribution(address) (src/

71

AUTOMATED TESTING

rewards/RewardsDistributionRecipient.sol#20-25) should emit an
event for:

- rewardsDistribution = _rewardsDistribution (src/rewards/
RewardsDistributionRecipient.sol#24)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-events-access-control

RewardsDistributionRecipient.setRewardsDistribution(address).
_rewardsDistribution (src/rewards/RewardsDistributionRecipient.sol
#20) lacks a zero-check on

- rewardsDistribution = _rewardsDistribution (src/rewards/
RewardsDistributionRecipient.sol#24)
Owned.nominateNewOwner (address)._owner (src/rewards/Owned.sol#14)
lacks a zero-check on

- nominatedOwner = _owner (src/rewards/Owned.sol#15)
StakingRewards.constructor (address, address ,address ,address,uint256
)._rewardsDistribution (src/rewards/StakingRewards.sol#48) lacks a

zero-check on

- rewardsDistribution = _rewardsDistribution (src/rewards/
StakingRewards.sol#55)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

Reentrancy in StakingRewards.exit() (src/rewards/StakingRewards.
sol#147-150) :

External calls:

- withdraw(_balances[msg.sender]) (src/rewards/StakingRewards.
sol#148)

- stakingToken.safeTransferFrom(address(this),msg.sender,
id,amount ,) (src/rewards/StakingRewards.sol#128-134)

Event emitted after the call(s):
- RewardPaid (msg.sender ,reward) (src/rewards/StakingRewards.
sol#143)

- getReward() (src/rewards/StakingRewards.sol#149)
Reentrancy in StakingRewards.stake(uint256) (src/rewards/
StakingRewards.sol#101-118):

External calls:

- stakingToken.safeTransferFrom(msg.sender ,address(this),id,
amount ,) (src/rewards/StakingRewards.sol#110-116)

Event emitted after the call(s):

- Staked(msg.sender,id,amount) (src/rewards/StakingRewards.sol
#117)
Reentrancy in StakingRewards.withdraw(uint256) (src/rewards/
StakingRewards.sol#120-136):

72

AUTOMATED TESTING

External calls:

- stakingToken.safeTransferFrom(address(this),msg.sender,id,
amount ,) (src/rewards/StakingRewards.sol#128-134)

Event emitted after the call(s):

- Withdrawn(msg.sender,id,amount) (src/rewards/StakingRewards.
sol#135)
Reference: https://github.com/crytic/slither/wiki/Detector =
Documentation#reentrancy-vulnerabilities -3

ERC20.permit (address,address,uint256 ,uint256 ,uint8 ,bytes32,6 bytes32
) (lib/solmate/src/tokens/ERC20.s0l#116-160) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool,string)(deadline >= block.timestamp,
PERMIT_DEADLINE_EXPIRED) (lib/solmate/src/tokens/ERC20.sol#125)
StakingRewards.lastTimeRewardApplicable () (src/rewards/
StakingRewards.sol#69-71) uses timestamp for comparisons

Dangerous comparisons:

- block.timestamp < periodFinish (src/rewards/StakingRewards.
sol#70)

StakingRewards.getReward() (src/rewards/StakingRewards.sol
#138-145) uses timestamp for comparisons

Dangerous comparisons:

- reward > @ (src/rewards/StakingRewards.sol#140)
StakingRewards .notifyRewardAmount (uint256) (src/rewards/
StakingRewards.sol#154-181) uses timestamp for comparisons

Dangerous comparisons:

- block.timestamp >= periodFinish (src/rewards/StakingRewards.
sol#160)

- require(bool,string)(rewardRate <= balance.div(
rewardsDuration),Provided reward too high) (src/rewards/
StakingRewards.sol#173-176)
StakingRewards.setRewardsDuration(uint256) (src/rewards/
StakingRewards.sol#196-203) uses timestamp for comparisons

Dangerous comparisons:

- require(bool,string)(block.timestamp > periodFinish,Previous

rewards period must be complete before changing the duration for
the new period) (src/rewards/StakingRewards.sol#197-200)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp

Owned.nominateNewOwner (address)._owner (src/rewards/Owned.sol#14)
lacks a zero-check on
- nominatedOwner = _owner (src/rewards/Owned.sol#15)

73

AUTOMATED TESTING

c

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

RewardsDistributionRecipient.setRewardsDistribution(address) (src/
rewards/RewardsDistributionRecipient.sol#20-25) should emit an
event for:

- rewardsDistribution = _rewardsDistribution (src/rewards/
RewardsDistributionRecipient.sol#24)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-events-access-control

Owned.nominateNewOwner (address)._owner (src/rewards/Owned.sol#14)
lacks a zero-check on

- nominatedOwner = _owner (src/rewards/Owned.sol#15)
RewardsDistributionRecipient.setRewardsDistribution(address).
_rewardsDistribution (src/rewards/RewardsDistributionRecipient.sol
#20) lacks a zero-check on

- rewardsDistribution = _rewardsDistribution (src/rewards/
RewardsDistributionRecipient.sol#24)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation
src/rewards analyzed (20 contracts with 57 detectors), 18 result(s
) found

74

AUTOMATED TESTING

Y2K Core:

Listing 37

A

b

FixedPointMathLib.rpow(uint256 ,uint256 ,uint256) (lib/solmate/src/
utils/FixedPointMathLib.sol#74-160) performs a multiplication on
the result of a division:

-Xx = xxRound_rpow_asm_@ / scalar (lib/solmate/src/utils/
FixedPointMathLib.sol#131)
-zx_rpow_asm_@ = z x x (lib/solmate/src/utils/

FixedPointMathLib.sol#136)
Reference: https://github.com/crytic/slither/wiki/Detector =
Documentation#divide-before-multiply

ERC1155. _doSafeTransferAcceptanceCheck (address, address, address,

uint256 ,uint256 ,bytes).response (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s0l1#476) is a local variable never
initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[], bytes).reason (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s0l1#503) is a local

variable never initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[],bytes).response (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s01#498) is a local

variable never initialized

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s01#480) is a local variable never
initialized

Reference: https://github.com/crytic/slither/wiki/Detector -

Documentation#uninitialized-local-variables

ERC1155. _doSafeTransferAcceptanceCheck (address, address, address,
uint256 ,uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token
/ERC1155/ERC1155.s0l1#467-486) ignores return value by
IERC1155Receiver (to).onERC1155Received (operator, from, id, amount,
data) (lib/openzeppelin-contracts/contracts/token/ERC1155/ERC1155.
sol#476-484)

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) ignores return value
by IERC1155Receiver (to).onERC1155BatchReceived (operator, from,ids,
amounts ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#497-507)

75

AUTOMATED TESTING

R R R

N

.

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#unused-return

Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).response (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s01#476)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address, address,uint256 ,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration:
response != IERC1155Receiver.onERCI1155Received.selector (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l#477)
Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#480) "' in ERC1155.
_doSafeTransferAcceptanceCheck (address ,address,address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration: revert(
string)(reason) (lib/openzeppelin-contracts/contracts/token/
ERC1155/ERC1155.s01#481)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address ,address ,uint256[],uint256[],bytes).response (lib/
openzeppelin-contracts/contracts/token/ERCT155/ERC1155.s01#498)"'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[J,uint256[]1,bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: response != IERC1155Receiver.
onERC1155BatchReceived.selector (lib/openzeppelin-contracts/
contracts/token/ERCT1155/ERC1155.s01#500)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address,address ,uint256[],uint256[],bytes).reason (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l1#503)"'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: revert(string)(reason) (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l1#504)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#pre-declaration-usage-of-local-variables

Reentrancy in SemiFungibleVault.deposit(uint256,uint256,address) (
src/SemiFungibleVault.sol#55-71):

External calls:

- _mint(receiver,id, shares,EMPTY) (src/SemiFungibleVault.sol
#66)

76

AUTOMATED TESTING

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assets,shares) (src/
SemiFungibleVault.sol#68)
Reentrancy in SemiFungibleVault.mint(uint256,uint256,address) (src
/SemiFungibleVault.sol#73-88):

External calls:

- _mint(receiver,id,assets,EMPTY) (src/SemiFungibleVault.sol
#83)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, assets, shares) (src/
SemiFungibleVault.sol#85)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -3

ERC20.permit (address,address,uint256 ,uint256 ,uint8 ,bytes32,bytes32
) (lib/solmate/src/tokens/ERC20.s0l#116-160) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool ,string)(deadline >= block.timestamp,
PERMIT_DEADLINE_EXPIRED) (lib/solmate/src/tokens/ERC20.s0l#125)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp

FixedPointMathLib.rpow(uint256 ,uint256 ,uint256) (lib/solmate/src/
utils/FixedPointMathLib.sol#74-160) performs a multiplication on
the result of a division:

-Xx = xxRound_rpow_asm_@ / scalar (lib/solmate/src/utils/
FixedPointMathLib.sol#131)
-zx_rpow_asm_@ = z x x (lib/solmate/src/utils/

FixedPointMathLib.sol#136)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#divide-before-multiply

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

uint256 ,uint256 ,bytes).response (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s01#476) is a local variable never
initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

77

AUTOMATED TESTING

A

A

c

address ,uint256[],uint256[],bytes).reason (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s0l#503) is a local

variable never initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[],bytes).response (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s0l1#498) is a local

variable never initialized

ERC1155. _doSafeTransferAcceptanceCheck (address, address, address,

uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s01#480) is a local variable never
initialized

Reference: https://github.com/crytic/slither/wiki/Detector -

Documentation#uninitialized-local-variables

ERC1155. _doSafeTransferAcceptanceCheck (address, address, address,
uint256 ,uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token
/ERC1155/ERC1155.s01#467-486) ignores return value by
IERC1155Receiver (to).onERC1155Received (operator, from, id, amount,
data) (lib/openzeppelin-contracts/contracts/token/ERC1155/ERC1155.
sol#476-484)

ERC1155. _doSafeBatchTransferAcceptanceCheck(address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l1#488-509) ignores return value
by IERC1155Receiver(to).onERC1155BatchReceived (operator, from,ids,
amounts ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#497-507)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#unused-return

Vault.changeFee(uint256) (src/Vault.sol#292-294) should emit an
event for:

- feeTaken = _fee (src/Vault.sol#293)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-events-arithmetic

Controller.constructor (address,address)._govToken (src/Controller.
sol#62) lacks a zero-check on

- govToken = _govToken (src/Controller.sol#65)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._token (src/Vault.sol#96) lacks a zero-check on

- tokenInsured = _token (src/Vault.sol#100)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._treasury (src/Vault.sol#94) lacks a zero-check on

78

AUTOMATED TESTING

N R

R

- treasury = _treasury (src/Vault.sol#102)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._controller (src/Vault.sol#98) lacks a zero-check
on

- controller = _controller (src/Vault.sol#106)
Vault.changeTreasury (address)._treasury (src/Vault.sol#296) lacks
a zero-check on

- treasury = _treasury (src/Vault.sol#297)
VaultFactory.constructor (address)._treasury (src/VaultFactory.sol
#47) lacks a zero-check on

- treasury = _treasury (src/VaultFactory.sol#50)
VaultFactory.setController (address)._controller (src/VaultFactory.
sol#152) lacks a zero-check on

- controller = _controller (src/VaultFactory.sol#153)
VaultFactory.changeTreasury (address,uint256)._treasury (src/
VaultFactory.sol#172) lacks a zero-check on

- treasury = _treasury (src/VaultFactory.sol#176)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).response (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s01#476)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address, address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration:
response != IERCI1155Receiver.onERCI155Received. selector (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l#477)
Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l#480)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address, address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration: revert(
string)(reason) (lib/openzeppelin-contracts/contracts/token/
ERC1155/ERC1155.s01#481)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address ,address ,uint256[],uint256[],bytes).response (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s01#498) "'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: response != IERC1155Receiver.
onERC1155BatchReceived.selector (lib/openzeppelin-contracts/

79

AUTOMATED TESTING

N 2 A A &

c

contracts/token/ERC1155/ERC1155.s0l1#500)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address ,address ,uint256[],uint256[],bytes).reason (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l1#503)"'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: revert(string)(reason) (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l#504)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#pre-declaration-usage-of-local-variables

Reentrancy in VaultFactory.createNewMarket (uint256,address,int256,
uint256 ,uint256 ,address) (src/VaultFactory.sol#68-120):

External calls:

- insurance.createAssets(epochBegin,epochEnd) (src/
VaultFactory.sol#102)

- risk.createAssets(epochBegin,epochEnd) (src/VaultFactory.sol
#103)

State variables written after the call(s):

- indexEpochs[marketIndex].push(epochEnd) (src/VaultFactory.
sol#105)

- tokenToOracle[_token] = _oracle (src/VaultFactory.sol#108)
Reentrancy in VaultFactory.deployMoreAssets(uint256,uint256,
uint256) (src/VaultFactory.sol#128-146):

External calls:

- Vault(insurance).createAssets (beginEpoch,endEpoch) (src/
VaultFactory.sol#136)

- Vault(risk).createAssets(beginEpoch,endEpoch) (src/
VaultFactory.sol#137)

State variables written after the call(s):

- indexEpochs[marketIndex].push(endEpoch) (src/VaultFactory.
sol#139)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -2

Reentrancy in VaultFactory.createNewMarket(uint256,address,int256,
uint256 ,uint256 ,address) (src/VaultFactory.sol#68-120):

External calls:

- insurance.createAssets(epochBegin,6epochEnd) (src/
VaultFactory.sol#102)

- risk.createAssets(epochBegin,epochEnd) (src/VaultFactory.sol
#103)

Event emitted after the call(s):

80

AUTOMATED TESTING

- InsuranceMarketCreated(marketIndex ,address(insurance),
address(risk), _token, _strikePrice) (src/VaultFactory.sol#111-117)
Reentrancy in VaultFactory.deployMoreAssets(uint256,uint256,
uint256) (src/VaultFactory.sol#128-146):

External calls:

- Vault(insurance).createAssets(beginEpoch,endEpoch) (src/
VaultFactory.sol#136)

- Vault(risk).createAssets(beginEpoch, endEpoch) (src/
VaultFactory.sol#137)

Event emitted after the call(s):

- InsuranceEpochDeployed(marketIndex ,Vault(insurance).
tokenInsured(),Vault(insurance).strikePrice()) (src/VaultFactory.
sol#141-145)

Reentrancy in SemiFungibleVault.deposit(uint256,uint256,address) (
src/SemiFungibleVault.sol#55-71):

External calls:

- _mint(receiver,id, shares,EMPTY) (src/SemiFungibleVault.sol
#66)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assets,shares) (src/
SemiFungibleVault.sol#68)

Reentrancy in Vault.deposit(uint256,uint256,address) (src/Vault.
sol#121-146):

External calls:

- _mint(receiver,id, sharesMinusFee , EMPTY) (src/Vault.sol#139)

- IERC1155Receiver (to).onERC1155Received (operator,from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,sharesMinusFee,b shares) (src/
Vault.sol#141)

Reentrancy in SemiFungibleVault.mint(uint256,uint256,address) (src
/SemiFungibleVault.sol#73-88):

External calls:

- _mint(receiver,id,assets,EMPTY) (src/SemiFungibleVault.sol
#83)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assets,shares) (src/

81

AUTOMATED TESTING

SemiFungibleVault.sol#85)
Reentrancy in Vault.mint(uint256 ,uint256,address) (src/Vault.sol
#155-180) :

External calls:

- _mint(receiver,id, assetsMinusFee ,EMPTY) (src/Vault.sol#173)

- IERC1155Receiver(to).onERC1155Received (operator,from,id,

amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assetsMinusFee,shares) (src/
Vault.sol#175)

Reentrancy in Controller.triggerDepeg(uint256 ,uint256) (src/
Controller.sol#75-98):

External calls:

- insrVault.endEpoch(mintId, true) (src/Controller.sol#83)

- riskVault.endEpoch(mintId,true) (src/Controller.sol#84)

- insrVault.setClaimTVL(mintId,riskVault.idFinalTVL (mintId)) (
src/Controller.sol#86)

- riskVault.setClaimTVL(mintId, insrVault.idFinalTVL(mintId)) (
src/Controller.sol#87)

- insrVault.sendTokens(mintId, vaultsAddress[1]) (src/
Controller.sol#89)

- riskVault.sendTokens(mintId,vaultsAddress[@]) (src/
Controller.sol#90)

Event emitted after the call(s):

- Depeglnsurance (marketIndex ,mintId,block.timestamp,
getLatestPrice(insrVault. tokenInsured())) (src/Controller.sol
#92-97)

Reentrancy in Controller.triggerEndEpoch(uint256 ,uint256) (src/
Controller.sol#103-126):

External calls:

- insrVault.endEpoch(mintId, false) (src/Controller.sol#117)

- riskVault.endEpoch(mintId,false) (src/Controller.sol#118)

- insrVault.setClaimTVL(mintId, @) (src/Controller.sol#120)

- riskVault.setClaimTVL(mintId,insrVault.idFinalTVL(mintId)) (
src/Controller.sol#121)

- insrVault.sendTokens(mintId,vaultsAddress[1]) (src/
Controller.sol#123)

Event emitted after the call(s):

- InsuranceExpired(marketIndex ,mintId) (src/Controller.sol
#125)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -3

82

AUTOMATED TESTING

ERC20.permit (address,address,uint256 ,uint256 ,uint8,bytes32,bytes32
) (lib/solmate/src/tokens/ERC20.s0l#116-160) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool,string) (deadline >= block.timestamp,
PERMIT_DEADLINE_EXPIRED) (lib/solmate/src/tokens/ERC20.sol#125)
Controller.triggerEndEpoch(uint256 ,uint256) (src/Controller.sol
#103-126) uses timestamp for comparisons

Dangerous comparisons:

- require(bool,string)(block.timestamp >= mintId, Epoch for
this insurance has not expired!) (src/Controller.sol#108-111)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp

FixedPointMathLib.rpow(uint256 ,uint256 ,uint256) (lib/solmate/src/
utils/FixedPointMathLib.sol#74-160) performs a multiplication on
the result of a division:

-Xx = xxRound_rpow_asm_@ / scalar (lib/solmate/src/utils/
FixedPointMathLib.sol#131)
-zx_rpow_asm_@ = z x x (lib/solmate/src/utils/

FixedPointMathLib.sol#136)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#divide-before-multiply

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s01#480) is a local variable never
initialized

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

uint256 ,uint256 ,bytes).response (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s0l1#476) is a local variable never
initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address,uint256[],uint256[],bytes).reason (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s0l1#503) is a local

variable never initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[],bytes).response (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s01#498) is a local

variable never initialized

Reference: https://github.com/crytic/slither/wiki/Detector -

Documentation#uninitialized-local-variables

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

83

AUTOMATED TESTING

b

e E

c

2

uint256 ,uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token
/ERC1155/ERC1155.s01#467-486) ignores return value by
IERC1155Receiver (to).onERC1155Received (operator, from, id, amount,
data) (lib/openzeppelin-contracts/contracts/token/ERC1155/ERC1155.
sol#476-484)

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) ignores return value
by IERC1155Receiver (to).onERC1155BatchReceived (operator,from,ids,
amounts ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#497-507)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#unused-return

Vault.changeFee(uint256) (src/Vault.sol#292-294) should emit an
event for:

- feeTaken = _fee (src/Vault.sol#293)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-events-arithmetic

Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._token (src/Vault.sol#96) lacks a zero-check on

- tokenInsured = _token (src/Vault.sol#100)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._treasury (src/Vault.sol#94) lacks a zero-check on

- treasury = _treasury (src/Vault.sol#102)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._controller (src/Vault.sol#98) lacks a zero-check
on

- controller = _controller (src/Vault.sol#106)
Vault.changeTreasury (address)._treasury (src/Vault.sol#296) lacks
a zero-check on

- treasury = _treasury (src/Vault.sol#297)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).response (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l#476)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address, address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration:
response != IERC1155Receiver.onERCI1155Received.selector (lib/

84

AUTOMATED TESTING

c

N N 2 A A

R A A A

c

openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l#477)
Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l1#480)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address, address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration: revert(
string)(reason) (lib/openzeppelin-contracts/contracts/token/
ERC1155/ERC1155.s01#481)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address,address ,uint256[],uint256[],bytes).response (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s01#498) '
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: response != IERC1155Receiver.
onERC1155BatchReceived.selector (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l#500)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address ,address ,uint256[],uint256[],bytes).reason (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l1#503) "'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l#488-509) potentially used
before declaration: revert(string)(reason) (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l1#504)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#pre-declaration-usage-of-local-variables

Reentrancy in SemiFungibleVault.deposit(uint256,uint256,address) (
src/SemiFungibleVault.sol#55-71):

External calls:

- _mint(receiver,id,shares,EMPTY) (src/SemiFungibleVault.sol
#66)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assets,shares) (src/
SemiFungibleVault.sol#68)
Reentrancy in Vault.deposit(uint256,uint256,address) (src/Vault.
sol#121-146) :

External calls:

- _mint(receiver,id, sharesMinusFee ,EMPTY) (src/Vault.sol#139)

85

AUTOMATED TESTING

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, sharesMinusFee, shares) (src/
Vault.sol#141)
Reentrancy in SemiFungibleVault.mint(uint256,uint256,address) (src
/SemiFungibleVault.sol#73-88):

External calls:

- _mint(receiver,id,assets,EMPTY) (src/SemiFungibleVault.sol
#83)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484) |

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, assets, shares) (src/
SemiFungibleVault.sol#85)
Reentrancy in Vault.mint(uint256 ,uint256,address) (src/Vault.sol
#155-180) :

External calls:

- _mint(receiver,id,assetsMinusFee ,EMPTY) (src/Vault.sol#173)

- IERC1155Receiver (to).onERC1155Received(operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender ,receiver,id,assetsMinusFee,shares) (src/
Vault.sol#175)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#freentrancy -vulnerabilities -3

ERC20.permit (address,address ,uint256 ,uint256 ,uint8 ,bytes32,bytes32
) (lib/solmate/src/tokens/ERC20.s0l#116-160) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool,string)(deadline >= block.timestamp,
PERMIT_DEADLINE_EXPIRED) (lib/solmate/src/tokens/ERC20.so0l#125)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp

FixedPointMathLib.rpow(uint256 ,uint256 ,uint256) (lib/solmate/src/
utils/FixedPointMathLib.sol#74-160) performs a multiplication on
the result of a division:

-Xx = xxRound_rpow_asm_@ / scalar (lib/solmate/src/utils/
FixedPointMathLib.sol#131)

86

AUTOMATED TESTING

e E e

N R A

.

-zx_rpow_asm_@ = z x x (lib/solmate/src/utils/
FixedPointMathLib.sol#136)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#divide-before-multiply

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,

uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s01#480) is a local variable never
initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[],bytes).response (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s01#498) is a local

variable never initialized

ERC1155. _doSafeTransferAcceptanceCheck (address, address, address,

uint256 ,uint256 ,bytes).response (lib/openzeppelin-contracts/

contracts/token/ERC1155/ERC1155.s0l1#476) is a local variable never
initialized

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,

address ,uint256[],uint256[], bytes).reason (lib/openzeppelin-

contracts/contracts/token/ERC1155/ERC1155.s0l#503) is a local

variable never initialized

Reference: https://github.com/crytic/slither/wiki/Detector -

Documentation#uninitialized-local-variables

ERC1155. _doSafeTransferAcceptanceCheck (address,address, address,
uint256 ,uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token
/ERC1155/ERC1155.s01#467-486) ignores return value by
IERC1155Receiver (to).onERC1155Received (operator, from, id, amount,
data) (lib/openzeppelin-contracts/contracts/token/ERC1155/ERC1155.
sol#476-484)

ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) ignores return value
by IERC1155Receiver(to).onERC1155BatchReceived(operator,from, ids,
amounts ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#497-507)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#unused-return

Vault.changeFee(uint256) (src/Vault.sol#292-294) should emit an
event for:

- feeTaken = _fee (src/Vault.sol#293)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-events-arithmetic

87

AUTOMATED TESTING

R A A

A

Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._token (src/Vault.sol#96) lacks a zero-check on

- tokenInsured = _token (src/Vault.sol#100)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._treasury (src/Vault.sol#94) lacks a zero-check on

- treasury = _treasury (src/Vault.sol#102)
Vault.constructor (address,string,string,address,uint256,address,
int256 ,address)._controller (src/Vault.sol#98) lacks a zero-check
on

- controller = _controller (src/Vault.sol#106)
Vault.changeTreasury (address)._treasury (src/Vault.sol#296) lacks
a zero-check on

- treasury = _treasury (src/Vault.sol#297)
VaultFactory.constructor (address)._treasury (src/VaultFactory.sol
#47) lacks a zero-check on

- treasury = _treasury (src/VaultFactory.sol#50)
VaultFactory.setController (address)._controller (src/VaultFactory.
sol#152) lacks a zero-check on

- controller = _controller (src/VaultFactory.sol#153)
VaultFactory.changeTreasury (address ,uint256)._treasury (src/
VaultFactory.sol#172) lacks a zero-check on

- treasury = _treasury (src/VaultFactory.sol#176)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#missing-zero-address-validation

Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address,uint256 ,uint256,bytes).response (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l#476)"' in ERC1155.
~doSafeTransferAcceptanceCheck (address,address,address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration:
response != IERC1155Receiver.onERCI1155Received.selector (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s01#477)
Variable 'ERC1155._doSafeTransferAcceptanceCheck (address, address,
address ,uint256 ,uint256 ,bytes).reason (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#480)"' in ERC1155.
_doSafeTransferAcceptanceCheck (address, address,address,uint256,
uint256 ,bytes) (lib/openzeppelin-contracts/contracts/token/ERC1155
/ERC1155.s01#467-486) potentially used before declaration: revert(
string)(reason) (lib/openzeppelin-contracts/contracts/token/
ERC1155/ERC1155.s01#481)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,

88

AUTOMATED TESTING

R A

A

c

address,address ,uint256[],uint256[],bytes).response (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s01#498) '
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: response != IERC1155Receiver.
onERC1155BatchReceived.selector (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s0l1#500)

Variable 'ERC1155._doSafeBatchTransferAcceptanceCheck (address,
address,address ,uint256[],uint256[],bytes).reason (lib/
openzeppelin-contracts/contracts/token/ERC1155/ERC1155.s0l1#5@3) "'
in ERC1155. _doSafeBatchTransferAcceptanceCheck (address, address,
address ,uint256[],uint256[],bytes) (lib/openzeppelin-contracts/
contracts/token/ERC1155/ERC1155.s01#488-509) potentially used
before declaration: revert(string)(reason) (lib/openzeppelin-
contracts/contracts/token/ERC1155/ERC1155.s0l1#504)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#pre-declaration-usage-of-local-variables

Reentrancy in VaultFactory.createNewMarket (uint256,address,int256,
uint256 ,uint256 ,address) (src/VaultFactory.sol#68-120):

External calls:

- insurance.createAssets (epochBegin,6 epochEnd) (src/
VaultFactory.sol#102)

- risk.createAssets(epochBegin,epochEnd) (src/VaultFactory.sol
#103)

State variables written after the call(s):

- indexEpochs[marketIndex].push(epochEnd) (src/VaultFactory.
sol#105)

- tokenToOracle[_token] = _oracle (src/VaultFactory.sol#108)
Reentrancy in VaultFactory.deployMoreAssets(uint256,uint256,
uint256) (src/VaultFactory.sol#128-146):

External calls:

- Vault(insurance).createAssets(beginEpoch, endEpoch) (src/
VaultFactory.sol#136)

- Vault(risk).createAssets(beginEpoch, endEpoch) (src/
VaultFactory.sol#137)

State variables written after the call(s):

- indexEpochs[marketIndex].push(endEpoch) (src/VaultFactory.
sol#139)

Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -2

Reentrancy in VaultFactory.createNewMarket (uint256,address,int256,

89

AUTOMATED TESTING

uint256 ,uint256 ,address) (src/VaultFactory.sol#68-120):

External calls:

- insurance.createAssets(epochBegin,epochEnd) (src/
VaultFactory.sol#102)

- risk.createAssets(epochBegin,epochEnd) (src/VaultFactory.sol
#103)

Event emitted after the call(s):

- InsuranceMarketCreated(marketIndex ,address(insurance),
address(risk),_token,_strikePrice) (src/VaultFactory.sol#111-117)
Reentrancy in VaultFactory.deployMoreAssets(uint256,uint256,
uint256) (src/VaultFactory.sol#128-146):

External calls:

- Vault(insurance).createAssets(beginEpoch, endEpoch) (src/
VaultFactory.sol#136)

- Vault(risk).createAssets(beginEpoch, endEpoch) (src/
VaultFactory.sol#137)

Event emitted after the call(s):

- InsuranceEpochDeployed(marketIndex ,Vault(insurance).
tokenInsured(),Vault(insurance).strikePrice()) (src/VaultFactory.
sol#141-145)

Reentrancy in SemiFungibleVault.deposit(uint256,uint256,address) (
src/SemiFungibleVault.sol#55-71):

External calls:

- _mint(receiver,id,shares,EMPTY) (src/SemiFungibleVault.sol
#66)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id,assets, shares) (src/
SemiFungibleVault.sol#68)

Reentrancy in Vault.deposit(uint256,uint256,address) (src/Vault.
sol#121-146) :

External calls:

- _mint(receiver,id, sharesMinusFee ,EMPTY) (src/Vault.sol#139)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, sharesMinusFee, shares) (src/
Vault.sol#141)

Reentrancy in SemiFungibleVault.mint(uint256,uint256,address) (src
/SemiFungibleVault.sol#73-88):
External calls:

90

AUTOMATED TESTING

- _mint(receiver,id,assets,EMPTY) (src/SemiFungibleVault.sol
#83)

- IERC1155Receiver (to).onERC1155Received (operator,from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, assets,shares) (src/
SemiFungibleVault.sol#85)
Reentrancy in Vault.mint(uint256 ,uint256,address) (src/Vault.sol
#155-180) :

External calls:

- _mint(receiver,id, assetsMinusFee ,EMPTY) (src/Vault.sol#173)

- IERC1155Receiver (to).onERC1155Received (operator, from,id,
amount ,data) (lib/openzeppelin-contracts/contracts/token/ERC1155/
ERC1155.s01#476-484)

Event emitted after the call(s):

- Deposit(msg.sender,receiver,id, assetsMinusFee, shares) (src/
Vault.sol#175)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#reentrancy-vulnerabilities -3

ERC20.permit (address,address,uint256 ,uint256 ,uint8 ,bytes32,bytes32
) (lib/solmate/src/tokens/ERC20.s0l#116-160) uses timestamp for
comparisons

Dangerous comparisons:

- require(bool,string)(deadline >= block.timestamp,
PERMIT_DEADLINE_EXPIRED) (lib/solmate/src/tokens/ERC20.so0l#125)
Reference: https://github.com/crytic/slither/wiki/Detector -
Documentation#block-timestamp
src/ analyzed (59 contracts with 57 detectors), 95 result(s) found

91

AUTOMATED TESTING

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of
well-known security issues, and to identify low-hanging fruits on the
targets for this engagement. Among the tools used was MythX, a security
analysis service for Ethereum smart contracts. MythX performed a scan
on all the contracts and sent the compiled results to the analyzers to
locate any vulnerabilities.

No major issues found by MythX.

92

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code location
	Proof of Concept
	Risk Level
	Recommendation

	
	Description
	Code location
	Risk Level
	Recommendation

	
	Description
	Code location
	Risk Level
	Recommendation

	
	Description
	Scenario
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation

	
	Description
	Code location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Code location
	Recommendation

	
	Description
	Recommendation

	
	Description
	Recommendation

	
	Description
	Code Location
	Recommendation

	
	Description
	Code Location
	Recommendation

	
	Description
	Code Location
	Recommendation

	
	Description
	Code Location
	Recommendation

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description

