
SHERLOCK SECURITY REVIEW FOR

Prepared for: Y2KPrepared by: SherlockLead Security Expert: 0x52Dates Audited: March 13 - March 27, 2023Prepared on: May 22, 2023

https://github.com/IAm0x52

Introduction
Y2K is a crypto-native take on structured products on-chain. The protocol createsliquid markets for hedging, leveraging, speculating and trading.
ScopeRepository: Y2K-Finance/EarthquakeBranch: earthquake-v2-sherlock-auditCommit: 736b2e1e51bef6daa6a5ecd1decb7d156316d795
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High14 5
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues
ast3rosbin2chenroguereddwarfberndartmueller

iglyxnobody2018evankenzo
ccczVAD37RuhumDug

1

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/README.md#audit-scope
https://github.com/thangtranth
https://github.com/bin2chen66
https://github.com/roguereddwarf
https://github.com/berndartmueller
https://github.com/iglyx
https://github.com/securitygrid
https://github.com/EvanYu0816
https://github.com/KenzoAgada
https://github.com/thereksfour
https://github.com/VAD37
https://github.com/0xruhum
https://github.com/dugdaniels

0x52HonorLtTrungOrehickuphh3immeasltyuRespxlibratusp0wd3rminhtrngwarRoomjprod15ShadowForcespyrosonic10holyhansssmstpr-brainbotyixxastoshiitwicek0xRobocopInspex

Ace-30Ch_301sinaretteElKucarrotckvolodyacsanuragjain0xmuxyzjoestakeyBauercharlesjhongc0Kage0xnirlinJ4deKingNFTni8maredatapunkb4by_y0d4EmmanuelAlexCzm

BPZbulej93climber20020xvjDelvir0Saeedalipoor01988ABAlemonmonkaysoftmartinpeanutszeroknotsshakaauditor0517ne0npfapostoljasonxiale0xMojitoJunnon0xPkhatriAymen0909

2

https://github.com/IAm0x52
https://github.com/pauliax
https://github.com/WelToHackerLand
https://github.com/hickuphh3
https://github.com/0ximmeas
https://github.com/ltyu
https://github.com/Respx
https://github.com/kiseln
https://github.com/imp0wd3r
https://github.com/Minh-Trng
https://github.com/warRoom
https://github.com/jesusrod15
https://github.com/ShadowForce
https://github.com/spyrosonic10
https://github.com/holyhansss
https://github.com/mstpr
https://github.com/yixxas
https://github.com/0xtoshii
https://github.com/twicek
https://github.com/0xRobocop
https://github.com/InspexAuditor
https://github.com/AceRivers-3
https://github.com/Ch-301
https://github.com/sinarette
https://github.com/El-Ku
https://github.com/carrotsmuggler
https://github.com/iamckn
https://github.com/0xVolodya
https://github.com/csanuragjain
https://github.com/masaun
https://github.com/joestakey
https://github.com/sleepriverfish
https://github.com/charlesjhongc
https://github.com/0kage-eth
https://github.com/ahmaddecoded
https://github.com/yttriumzz
https://github.com/ydspa
https://github.com/NishithPat
https://github.com/0xDatapunk
https://github.com/dhanjani
https://github.com/Emedudu
https://github.com/AlexCZM
https://github.com/BPZ
https://github.com/bulej93
https://github.com/climber2002
https://github.com/0xvj
https://github.com/Delvir0
https://github.com/saeedalipoorcom
https://github.com/abarbatei
https://github.com/lemonmon1984
https://github.com/kayroy247
https://github.com/martin-petrov03
https://github.com/cryptostaker2
https://github.com/zeroknots
https://github.com/shaka0x
https://github.com/auditor0517
https://github.com/ne0n2396
https://github.com/PFAhard
https://github.com/crazy4linux
https://github.com/mojito-auditor
https://github.com/jraynaldi3
https://github.com/0xPkhatri
https://github.com/kaymen99

Issue H-1: Funds can be stolen because of incorrect up-date to ownerToRollOverQueueIndex for existing rollovers
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/2
Found by0Kage, 0x52, 0xMojito, 0xPkhatri, 0xRobocop, 0xnirlin, AlexCzm, Aymen0909,Bauer, Ch_301, Dug, ElKu, Emmanuel, HonorLt, Junnon, Respx, TrungOre, VAD37,ast3ros, auditor0517, berndartmueller, bin2chen, cccz, charlesjhongc, ck,climber2002, csanuragjain, datapunk, evan, hickuphh3, holyhansss, iglyx, immeas,jasonxiale, joestakey, kenzo, libratus, ltyu, minhtrng, mstpr-brainbot, ne0n,pfapostol, roguereddwarf, shaka, sinarette, spyrosonic10, toshii, twicek, volodya,warRoom, yixxas, zeroknots
SummaryIn the case where the owner has an existing rollover, the
ownerToRollOverQueueIndex incorrectly updates to the last queue index. Thiscauses the notRollingOver check to be performed on the incorrect _id, which thenallows the depositor to withdraw funds that should've been locked.
Vulnerability DetailIn enlistInRollover(), if the user has an existing rollover, it overwrites the existingdata:
if (ownerToRollOverQueueIndex[_receiver] != 0) {

// if so, update the queue
uint256 index = getRolloverIndex(_receiver);
rolloverQueue[index].assets = _assets;
rolloverQueue[index].epochId = _epochId;

However, regardless of whether the user has an existing rollover, the
ownerToRolloverQueueIndex points to the last item in the queue:
ownerToRollOverQueueIndex[_receiver] = rolloverQueue.length;

Thus, the notRollingOver modifier will check the incorrect item for users withexisting rollovers:
QueueItem memory item = rolloverQueue[getRolloverIndex(_receiver)];
if (

item.epochId == _epochId &&

3

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/2

(balanceOf(_receiver, _epochId) - item.assets) < _assets
) revert AlreadyRollingOver();

allowing the user to withdraw assets that should've been locked.
ImpactUsers are able to withdraw assets that should've been locked for rollovers.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L252-L257 https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L755-L760
Tool usedManual Review
RecommendationThe ownerToRollOverQueueIndex should be pointing to the last item in the queue inthe else case only: when the user does not have an existing rollover queue item.
} else {

// if not, add to queue
rolloverQueue.push(

QueueItem({
assets: _assets,
receiver: _receiver,
epochId: _epochId

})
);

+ ownerToRollOverQueueIndex[_receiver] = rolloverQueue.length;
}
- ownerToRollOverQueueIndex[_receiver] = rolloverQueue.length;

Discussion3xHarrygood catch3xHarry
4

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L252-L257
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L252-L257
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L755-L760
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L755-L760

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/128IAm0x52Fix looks good. Assigning index has been moved inside else block

5

https://github.com/Y2K-Finance/Earthquake/pull/128

Issue H-2: Earlier users in rollover queue can grief laterusers
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/72
Found byBPZ, Ch_301, Dug, Emmanuel, J4de, Ruhum, TrungOre, ast3ros, berndartmueller,bin2chen, evan, hickuphh3, immeas, jprod15, kenzo, ltyu, minhtrng, mstpr-brainbot,nobody2018, roguereddwarf, sinarette, spyrosonic10, toshii, twicek
SummaryThe current implementation enables users who are earlier in the queue to griefthose who are later.
Vulnerability DetailThere is a rolloverAccounting mapping that, for every epoch, tracks the currentindex of the queue for which mints have been processed up to thus far.When a user delists from the queue, the last user enlisted will replace the delisteduser's queue index.It is thus possible for the queue to be processed up to, or past, the delisted user'squeue index, but before the last user has been processed, the processed userdelists, thus causing the last user to not have his funds rollover.
POC1. Alice enlists into the queue (index 1), then Bob (index 2)2. Alice (or a relayer) calls mintRollovers() with _operations = 1, and Alice hasher funds rollover.3. Alice delists from the rollover.Bob is then unable to have his funds rollover until the next epoch is created, unlesshe delists and re-enlists into the queue (defeating the purpose of rolloverfunctionality).
ImpactWhether accidental or deliberate, it is possible for users to not have their fundsrollover.

6

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/72

Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L293-L296
Tool usedManual Review
RecommendationInstead of specifying the number of operations to execute, consider having startand end indexes, with a boolean mapping to track if a user's rollover has beenprocessed.
Discussion3xHarrykeeping track of rollovers with a mapping would increase gas cost substantially,however it would be a better solution than blocking delisting during deposit period3xHarrysetting assets to 0 instead of removing the QueueItem from the array sounds like amore reasonable approach, given that it's very unlikely for the rollover queue arraylength to reach the max size. Also, there can be more markets with similar strikeprices deployed at any time.3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/1270xRobocopEscalate for 10 USDCThis is a valid low issue but not a high or medThis is more of an inconvenience for the user and there is no loss:"User experience and design improvement issues: Issues that cause minorinconvenience to users where there is no material loss of funds are not consideredvalid. Funds are temporarily stuck and can be recovered by the administrator orowner. Also, if a submission is a design opinion/suggestion without any clearindications of loss of funds is not a valid issue."There is also a little guideline to identify highs and meds. Pay attention to "shouldnot be easily replaced without loss of funds" which is not the case in this issue.sherlock-admin

7

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L293-L296
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L293-L296
https://github.com/Y2K-Finance/Earthquake/pull/127
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-high-issue
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-medium-issue

Escalate for 10 USDCThis is a valid low issue but not a high or medThis is more of an inconvenience for the user and there is no loss:"User experience and design improvement issues: Issues that causeminor inconvenience to users where there is no material loss of funds arenot considered valid. Funds are temporarily stuck and can be recoveredby the administrator or owner. Also, if a submission is a designopinion/suggestion without any clear indications of loss of funds is not avalid issue."There is also a little guideline to identify highs and meds. Pay attention to"should not be easily replaced without loss of funds" which is not thecase in this issue.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.dmitriiaNot agree with the escalation, that's core logic flaw with a range of materialimpacts, definitely high.hrishibhatEscalation rejectedBased on the issue and its duplicates and their impacts, considering this issue as avalid high since it breaks the core functionality.sherlock-adminEscalation rejectedBased on the issue and its duplicates and their impacts, considering thisissue as a valid high since it breaks the core functionality.This issue's escalations have been rejected!Watsons who escalated this issue will have their escalation amount deducted fromtheir next payout.IAm0x52Needs additional changes. Using isEnlistedInRolloverQueue causes duplicateentries that can't be removedIAm0x52
8

https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-high-issue
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-medium-issue

Fix looks good. isEnlistedInRolloverQueue has been changed making it impossibleto have duplicate entriesjacksanford1Note: 0x52's last message is in reference to this commit:https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7a3a7d4668ff123bffb2ff21

9

https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7a3a7d4668ff123bffb2ff21
https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7a3a7d4668ff123bffb2ff21

IssueH-3: depositFee canbebypassed via deposit queue
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/75
Found by0xRobocop, Ace-30, AlexCzm, Ch_301, Dug, ElKu, Inspex, J4de, Respx, Ruhum,ShadowForce, TrungOre, VAD37, ast3ros, bulej93, evan, hickuphh3, iglyx, immeas,kenzo, minhtrng, roguereddwarf, toshii, yixxas
SummaryThe deposit fee can be circumvented by a queue deposit + mintDepositInQueue()call in the same transaction.
Vulnerability DetailA deposit fee is charged and increases linearly within the deposit window.However, this fee can be avoided if one deposits into the queue instead, then mintshis deposit in the queue.
POCAssume non-zero depositFee, valid epoch _id = 1. At epoch end, instead of calling
deposit(1, _assets, 0xAlice), Alice writes a contract that performs
deposit(0,_assets,0xAlice) + mintDepositInQueue(1,1) to mint her deposit in thesame tx (her deposit gets processed first because FILO system) . She pockets the
relayerFee, essentially paying zero fees instead of incurring the depositFee.
ImpactLoss of protocol fee revenue.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L494-L500 https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L354
Tool usedManual Review

10

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/75
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L494-L500
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L494-L500
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L354
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L354

RecommendationBecause of the FILO system, charging the dynamic deposit fee will be unfair toqueue deposits as they're reliant on relayers to mint their deposits for them.Consider taking a proportion of the relayer fee.
Discussion3xHarryThis is a valid issue. We will apply depositFee to all mints (queue and direct).However, given that queue has the potential to affect when users's shares areminted because of FILO, min deposit has to be raised for the queue, to make itsubstantially harder to DDoS the queue. Minimizing DDoS queue deposits will leadto queue deposits getting the least fees as relayers can mint from the first secondthe epoch is created.3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/1263xHarry@IAm0x52 to elaborate on this issue: relayers are incentivized to mint thedepositQueue from the second a new epoch is created to extract the most amountof relayerFees. In fact Y2K will have a build in relayerInfra into the deploymentprocess. The assumption is, that queueDeposit users will pay a minimal Fee. Theattack factor of the queue beeing to long leading to prolonged queue depositexecutions will be mitigated by adding a significant deposit requirement for queuedeposits. These measures will mitigate high deposit Fees for Queue deposits aswell as prevent late direct depositors using the queue to evade the depositFee.jacksanford1Bringing in this discussion from Discord:0x52As a follow up for PR126. You keep the minRequiredDeposit modifier onenlistInRollover but the way you modified it, it can only apply if epochId== 0 but enlistInRollover doesn't work for epochId == 0 so the modifier isuseless on that function. My suggestion would be to either remove it ifyou no longer need that protection or make a new modifier specificallydesigned for enlistInRollover3xHarryregarding [issue] 75 / PR 126 fixed inhttps://github.com/Y2K-Finance/Earthquake/pull/126/commits/9c659161dc952df99201b99d4ea54e9dda642ecb

11

https://github.com/Y2K-Finance/Earthquake/pull/126
https://github.com/Y2K-Finance/Earthquake/pull/126/commits/9c659161dc952df99201b99d4ea54e9dda642ecb
https://github.com/Y2K-Finance/Earthquake/pull/126/commits/9c659161dc952df99201b99d4ea54e9dda642ecb

IAm0x52Fix looks good. enlistInRollover now applies a minimum deposit requirement

12

Issue H-4: When rolling over, user will lose his winningsfrom previous epoch
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/163
Found byAce-30, Inspex, TrungOre, VAD37, berndartmueller, bin2chen, carrot, cccz,charlesjhongc, evan, hickuphh3, iglyx, immeas, kenzo, minhtrng, mstpr-brainbot,nobody2018, roguereddwarf, toshii, warRoom
SummaryWhen mintRollovers is called, when the function mints shares for the new epochfor the user, the amount of shares minted will be the same as the original assets herequested to rollover - not including the amount he won. After this, all these assetshares from the previous epoch are burnt. So the user won't be able to claim hiswinnings.
Vulnerability DetailWhen user requests to enlistInRollover, he supplies the amount of assets torollover, and this is saved in the queue.
rolloverQueue[index].assets = _assets;

When mintRollovers is called, the function checks if the user won the previousepoch, and proceeds to burn all the shares the user requested to roll:
if (epochResolved[queue[index].epochId]) {

uint256 entitledShares = previewWithdraw(
queue[index].epochId,
queue[index].assets

);
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

...
// @note we know shares were locked up to this point
_burn(

queue[index].receiver,
queue[index].epochId,
queue[index].assets

);

13

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/163
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L411

Then, and this is the problem, the function mints to the user his original assets -
assetsToMint - and not entitledShares.
uint256 assetsToMint = queue[index].assets - relayerFee;
_mintShares(queue[index].receiver, _epochId, assetsToMint);

So the user has only rolled his original assets, but since all his share of them isburned, he will not be able anymore to claim his winnings from them.Note that if the user had called withdraw instead of rolling over, all his shares wouldbe burned, but he would receive his entitledShares, and not just his original assets.We can see in this in withdraw. Note that _assets is burned (like in minting rollover)but entitledShares is sent (unlike minting rollover, which only remints _assets.)
_burn(_owner, _id, _assets);
_burnEmissions(_owner, _id, _assets);
uint256 entitledShares;
uint256 entitledEmissions = previewEmissionsWithdraw(_id, _assets);
if (epochNull[_id] == false) {

entitledShares = previewWithdraw(_id, _assets);
} else {

entitledShares = _assets;
}
if (entitledShares > 0) {

SemiFungibleVault.asset.safeTransfer(_receiver, entitledShares);
}
if (entitledEmissions > 0) {

emissionsToken.safeTransfer(_receiver, entitledEmissions);
}

ImpactUser will lose his rewards when rolling over.
Code Snippet
if (epochResolved[queue[index].epochId]) {

uint256 entitledShares = previewWithdraw(
queue[index].epochId,
queue[index].assets

);
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

...
// @note we know shares were locked up to this point
_burn(

14

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L437

queue[index].receiver,
queue[index].epochId,
queue[index].assets

);

Tool usedManual Review
RecommendationEither remint the user his winnings also, or if you don't want to make him roll overthe winnings, change the calculation so he can still withdraw his shares of thewinnings.
Discussion3xHarrythis makes total sense! thx for catching this!3xHarrywill have to calculate how much his original deposit is worth in entitledShares androllover the specified amount3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/125IAm0x52Needs additional changes. This will revert if diff is too high due to underflow in L412IAm0x52Fix looks good. Point of underflow has been removed in a subsequent PRjacksanford1Note: Subsequent PR 0x52 is referencing refers to this commit:https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87da612166dd060bfd8dd742ecb

15

https://github.com/Y2K-Finance/Earthquake/pull/125
https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87da612166dd060bfd8dd742ecb
https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87da612166dd060bfd8dd742ecb

IssueH-5: Adversarycanbreakdepositqueueandcauseloss of funds
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/468
Found by0x52, 0xRobocop, Bauer, HonorLt, Respx, Ruhum, VAD37, bin2chen, immeas,joestakey, jprod15, libratus, ltyu, mstpr-brainbot, nobody2018, roguereddwarf,warRoom, yixxas
SummaryVulnerability DetailCarousel.sol#L531-L538
function _mintShares(

address to,
uint256 id,
uint256 amount

) internal {
_mint(to, id, amount, EMPTY);
_mintEmissions(to, id, amount);

}

When processing deposits for the deposit queue, it _mintShares to the specifiedreceiver which makes a _mint subcall.ERC1155.sol#L263-L278
function _mint(address to, uint256 id, uint256 amount, bytes memory data)

internal virtual {,!

require(to != address(0), "ERC1155: mint to the zero address");

address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);

_beforeTokenTransfer(operator, address(0), to, ids, amounts, data);

_balances[id][to] += amount;
emit TransferSingle(operator, address(0), to, id, amount);

_afterTokenTransfer(operator, address(0), to, ids, amounts, data);

16

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/468
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L531-L538
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ca822213f2275a14c26167bd387ac3522da67fe9/contracts/token/ERC1155/ERC1155.sol#L263-L278

_doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
}

The base ERC1155 _mint is used which always behaves the same way that ERC721safeMint does, that is, it always calls _doSafeTrasnferAcceptanceCheck whichmakes a call to the receiver. A malicious user can make the receiver always revert.This breaks the deposit queue completely. Since deposits can't be canceled thisWILL result in loss of funds to all users whose deposits are blocked. To makematters worse it uses first in last out so the attacker can trap all deposits beforethem
ImpactUsers who deposited before the adversary will lose their entire deposit
Code SnippetCarousel.sol#L310-L355
Tool usedManual Review
RecommendationOverride _mint to remove the safeMint behavior so that users can't DOS the depositqueue
Discussion3xHarryagree with this issue, there is no easy solution to this, as by definition whendepositing into queue, the user gives up the atomicity of his intended mint.Looking at Openzeppelins 1155 implementation guide it is recommended to ensurethe receiver of the asset is able to call safeTransferFrom. By removing theacceptance check in the _mint function, funds could be stuck in a smart contract.Another alternative would be to do the 1155 acceptance check in the mint functionand confiscate the funds if the receiver is not able to hold 1155s. The funds couldbe retrieved via a manual process from the treasury afterward.3xHarrygoing with Recommendation is prob the easiest way3xHarry

17

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310-L355
https://docs.openzeppelin.com/contracts/3.x/erc1155

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/124IAm0x52Fix looks good. _mint no longer calls acceptance check so rollover can longer beDOS'd by it

18

https://github.com/Y2K-Finance/Earthquake/pull/124

IssueM-1: ControllerPeggedAssetV2: outdatedpricemaybe used which can lead to wrong depeg events
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/70
Found by0xRobocop, 0xnirlin, ABA, Ch_301, Delvir0, Saeedalipoor01988, ShadowForce,TrungOre, ast3ros, bin2chen, carrot, evan, kaysoft, lemonmon, martin, minhtrng,p0wd3r, peanuts, roguereddwarf
SummaryThe updatedAt timestamp in the price feed response is not checked. So outdatedprices may be used.
Vulnerability DetailThe following checks are performed for the chainlink price feed:https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L299-L315As you can see the updatedAt timestamp is not checked. So the price may beoutdated.
ImpactThe price that is used by the Controller can be outdated. This means that a depegevent may be caused due to an outdated price which is incorrect. Only currentprices must be used to check for a depeg event.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L273-L318
Tool usedManual Review
RecommendationIntroduce a reasonable limit for how old the price can be and revert if the price isolder:

19

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/70
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L299-L315
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L299-L315
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L273-L318
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L273-L318

iff --git a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol,!

index 0587c86..cf2dcf5 100644
--- a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
+++ b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
@@ -275,8 +275,8 @@ contract ControllerPeggedAssetV2 {

,
/*uint80 roundId*/
int256 answer,

- uint256 startedAt, /*uint256 updatedAt*/ /*uint80 answeredInRound*/
- ,
+ uint256 startedAt,
+ uint256 updatedAt, /*uint80 answeredInRound*/

) = sequencerUptimeFeed.latestRoundData();

@@ -314,6 +314,8 @@ contract ControllerPeggedAssetV2 {

if (answeredInRound < roundID) revert RoundIDOutdated();

+ if (updatedAt < block.timestamp - LIMIT) revert PriceOutdated();
+

return price;
}

Discussion3xHarryconsidering this3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/141IAm0x52Fix looks good. Controller will now revert if price is stale

20

https://github.com/Y2K-Finance/Earthquake/pull/141

IssueM-2: ControllerPeggedAssetV2: triggerEndEpoch func-tion can be called even if epoch is null epoch leading toloss of funds
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/108
Found by0xRobocop, 0xnirlin, 0xvj, KingNFT, berndartmueller, bin2chen, charlesjhongc,climber2002, evan, holyhansss, kenzo, libratus, ltyu, minhtrng, roguereddwarf,warRoom, yixxas
SummaryAn epoch can be resolved in three ways which correspond to the three functionsavailable in the Controller: triggerDepeg, triggerEndEpoch, triggerNullEpoch.The issue is that triggerEndEpoch can be called even though triggerNullEpochshould be called. "Null epoch" means that any of the two vaults does not havefunds deposited. In this case the epoch should be resolved with triggerNullEpochsuch that funds are not transferred from the premium vault to the collateral vault.So in triggerEndEpoch is should be checked whether the conditions for a null epochapply. If that's the case, the triggerEndEpoch function should revert.
Vulnerability DetailThe assumption the code makes is that if the null epoch applies, triggerNullEpochwill be called before the end timestamp of the epoch which is when
triggerEndEpoch can be called.This is not necessarily true.
triggerNullEpoch might not be called in time (e.g. because the epoch duration isvery short or simply nobody calls it) and then the triggerEndEpoch function can becalled which sends the funds from the premium vault into the collateral vault:https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L172-L192If the premium vault is the vault which has funds and the collateral vault does not,then the funds sent to the collateral vault are lost.
ImpactLoss of funds for users that have deposited into the premium vault.

21

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/108
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L172-L192
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L172-L192

Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L144-L202
Tool usedManual Review
Recommendation
triggerEndEpoch should only be callable when the conditions for a null epoch don'tapply:
diff --git a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol

b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol,!

index 0587c86..7b25cf3 100644
--- a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
+++ b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
@@ -155,6 +155,13 @@ contract ControllerPeggedAssetV2 {

collateralVault.epochExists(_epochId) == false
) revert EpochNotExist();

+ if (
+ premiumVault.totalAssets(_epochId) == 0 ||
+ collateralVault.totalAssets(_epochId) == 0
+) {
+ revert VaultZeroTVL();
+ }
+

(, uint40 epochEnd,) = premiumVault.getEpochConfig(_epochId);

if (block.timestamp <= uint256(epochEnd)) revert EpochNotExpired();

Discussion3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/140IAm0x52Fix looks good. triggerEndEpoch can no longer be called on expired, null epochs

22

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L144-L202
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L144-L202
https://github.com/Y2K-Finance/Earthquake/pull/140

IssueM-3: Controller doesn't send treasury funds to thevault's treasury address
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/110
Found byDug, Ruhum, bin2chen, nobody2018, roguereddwarf
SummaryThe Controller contract sends treasury funds to its own immutable treasuryaddress instead of sending the funds to the one stored in the respective vaultcontract.
Vulnerability DetailEach vault has a treasury address that is assigned on deployment which can alsobe updated through the factory contract:But, the Controller, responsible for sending the fees to the treasury, uses theimmutable treasury address that it was initialized with:
ImpactIt's not possible to have different treasury addresses for different vaults. It's alsonot possible to update the treasury address of a vault although it has a function todo that. Funds will always be sent to the address the Controller was initialized with.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L79 https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L265-L268https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L186https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L40
Tool usedManual Review

23

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/110
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L79
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L79
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L265-L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L265-L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L186
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L186
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L40
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L40

RecommendationThe Controller should query the Vault to get the correct treasury address, e.g.:
Discussion3xHarrywill use one location for the treasury address which will be on the factory.3xHarryfixed in https://github.com/Y2K-Finance/Earthquake/pull/137IAm0x52Needs additional changes. Controller still sends to it's immutable address and nottreasury address on factoryIAm0x52Fix looks good. Controller has been updated to use treasury address from factoryjacksanford1Note: 0x52 is referring to this specific commit in the last message:https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d1da8cb1af624e90c12315953

24

https://github.com/Y2K-Finance/Earthquake/pull/137
https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d1da8cb1af624e90c12315953
https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d1da8cb1af624e90c12315953

Issue M-4: Stuck emissions for nullified epochs
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/122
Found by0x52, Ch_301, bin2chen, carrot, cccz, hickuphh3, immeas, kenzo, libratus, ltyu,roguereddwarf, sinarette
SummaryIf either the premium and / or collateral vault has 0 TVL for an epoch withemissions, those emissions will not be withdrawable by anyone.
Vulnerability DetailThe finalTVL set for a vault with 0 TVL (epoch will be nullified) will be 0. As a result,emissions that were allocated to that vault are not withdrawable by anyone.It's admittedly unlikely to happen since the emissionsToken is expected to be Y2Kwhich has value and is tradeable.
ImpactEmissions cannot be recovered.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L157 https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636
Tool usedManual Review
RecommendationCreate a function to send emissions back to the treasury if an epoch is marked asnullified.A related issue is that if both the premium and collateral vaults have 0 TVL, only thecollateral vault gets marked as nullified. Consider handling this edge case.

25

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/122
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L157
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L157
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636

Discussion3xHarrygreat catch3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/139IAm0x52Fix looks good. setEpochNull is overridden in Carousel to transfer emissions backto treasury

26

https://github.com/Y2K-Finance/Earthquake/pull/139

IssueM-5: Malicious user canmake rolloverQueueneverget processed
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/172
Found byAce-30, ElKu, Respx, ShadowForce, TrungOre, bin2chen, ck, evan, hickuphh3,immeas, minhtrng, nobody2018, twicek
Summary
rolloverQueue is shared by all epochs. For each round of epoch, mintRollovers willprocess rolloverQueue from the beginning. A normal user calls enlistInRollover toenter the rolloverQueue, and in the next round of epoch, he will call
delistInRollover to exit the rolloverQueue. In this case, rolloverQueue.length isacceptable. However, malicious user can make the rolloverQueue.length huge,causing the relayer to consume a huge amount of gas for every round of epoch.Carousel will send relayerFee to relayer in order to encourage external relayer tocall mintRollovers. Malicious user can make external relayer unwilling to call
mintRollovers. Ultimately, rolloverQueue will never be processed.
Vulnerability DetailLet's assume the following scenario:relayerFee is 1e18. The current epochId is E1, and the next epochId is E2. Atpresent, rolloverQueue has 10 normal user QueueItem. Bob has deposited 1000e18assets before the start of E1, so balanceOf(bob, E1) = 1000e18.1. Bob creates 1000 addresses, each address has setApprovalForAll to bob. Hecalls two functions for each address:

Carousel.safeTransferFrom(bob, eachAddress, E1, 1e18)

Carousel.enlistInRollover(E1, 1e18, eachAddress), 1e18 equal tominRequiredDeposit.2. rolloverQueue.length equals to 1010(1000+10).These 1000 addresses will never call delistInRollover to exit the rolloverQueue,so no matter whether these addresses win or lose, their QueueItemwill always bein the rolloverQueue. In each round of epoch, the relayer has to process at least1000 QueueItems, and these QueueItems are useless. Malicious users only needto do it once to cause permanent affects.When a normal user loses in a certain round of epoch, he may not calldelistInRollover to exit the rolloverQueue. For example, he left the platform and
27

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/172

stopped playing. In this case, rolloverQueue.length will become larger and largeras time goes by.Carousel contract will not send any relayerFee to the relayer, because theseuseless QueueItemwill not increase the valueof [executions](https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L447). Obviously, calling mintRollovershas no benefit for the relayer. Therefore, no relayer is willing to do this.
ImpactThe relayer consumes a huge amount of gas for calling mintRollovers for eachround of epoch. In other words, as long as the rolloverQueue is unacceptablylong, it is a permanent DOS.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238-L271
Tool usedManual Review
RecommendationWe should change the single queue to queue mapping. In this way, relayer onlyneeds to process the queue corresponding to the epochId.
--- a/Earthquake/src/v2/Carousel/Carousel.sol
+++ b/Earthquake/src/v2/Carousel/Carousel.sol
@@ -23,7 +23,7 @@ contract Carousel is VaultV2 {

IERC20 public immutable emissionsToken;

mapping(address => uint256) public ownerToRollOverQueueIndex;
- QueueItem[] public rolloverQueue;
+ mapping(uint256 => QueueItem[]) public rolloverQueues;

QueueItem[] public depositQueue;
mapping(uint256 => uint256) public rolloverAccounting;
mapping(uint256 => mapping(address => uint256)) public _emissionsBalances;

28

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238-L271
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238-L271

Discussion3xHarryI would disagree with the feasibility of this attack.1. there is a non neglectable minDeposit which makes this attack much moreexpensive2. the queue can be processed in multiple transactoins and the relayerFee issupposed to be configured so much so that each processed item gasconsumption is reimbursed with a profitIAm0x52Issue has been acknowledged by sponsor

29

Issue M-6: User deposit may never be entertained fromdeposit queue
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/174
Found by0Kage, 0xmuxyz, Ruhum, TrungOre, ck, csanuragjain, hickuphh3, jprod15, twicek
SummaryDue to FILO (first in last out) stack structure, while dequeuing, the first few entriesmay never be retrieved. These means User deposit may never be entertained fromdeposit queue if there are too many deposits
Vulnerability Detail1. Assume User A made a deposit which becomes 1st entry in depositQueue2. Post this X more deposits were made, so depositQueue.length=X+13. Relayer calls mintDepositInQueue and process X-9 deposits
while ((length - _operations) <= i) {

// this loop impelements FILO (first in last out) stack to reduce gas
cost and improve code readability,!

// changing it to FIFO (first in first out) would require more code
changes and would be more expensive,!

_mintShares(
queue[i].receiver,
_epochId,
queue[i].assets - relayerFee

);
emit Deposit(

msg.sender,
queue[i].receiver,
_epochId,
queue[i].assets - relayerFee

);
depositQueue.pop();
if (i == 0) break;
unchecked {

i--;
}

}

4. This reduces deposit queue to only 10
30

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/174

5. Before relayer could process these, Y more deposits were made whichincreases deposit queue to y+106. This means Relayer might not be able to again process User A deposit as thisdeposit is lying after processing Y+9 deposits
ImpactUser deposit may remain stuck in deposit queue if a large number of deposit arepresent in queue and relayer is interested in dequeuing all entries
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310
Tool usedManual Review
RecommendationAllow User to dequeue deposit queue based on index, so that if such conditionarises, user would be able to dequeue his deposit (independent of relayer)
Discussion3xHarrydepositing into queue should count as committing to an epoch. By giving the userthe ability to delist his queue he could take advantage of market movements.However, we will raise min deposit for the queue to make DDoS very expensive.twicekEscalate for 10 USDCMy issues #62 and #63 are both marked as duplicate of this issue when only #63 isactually a duplicate. #63 is a duplicate of #174 who both relate to how queueddeposits can get stuck in the deposit queue for various reasons. #62 however,does not describe anything related to both the deposit queue and the separate factthat a there is DoS attack vector. Instead, it relates to how relayers can get griefedbecause unrollable rollover items in the rollover queue can aggregate and leadthem to not get paid for their work. In the duplicates, that I will cite below, this issueis achieved in various different ways but they all lead to the same impact.Therefore, to reiterate, the #62 and #63 are different because they don't involvethe same states, attack vector and users. #63 involve the deposit queue and a DoS

31

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310

attack that lead to economic damage for regular users of the protocol. #62 involvethe rollover queue and a griefing attack that lead to economic damage for relayers.In my judging repos I market as duplicate of #63: #79 #82 #114 #174 #220 #274#295 #317 #342 #431 #447 and as duplicate of #62: #80 #218 #235 #275 #284#309 #393 #411 #475From what I have seen all or almost all this issue are present here as duplicate of#174. A lot of people submitted them as different issues because they are indeedcompletely different. I might have made some mistakes in my judging, but it'smostly consistent with what I say above. Specifically, I missed #176 for which Ipartially agree with the escalation of securitygrid that it should not be a duplicateof #174 but it also should not be a solo finding because it is a duplicate of #62 andits duplicates.sherlock-adminEscalate for 10 USDCMy issues #62 and #63 are both marked as duplicate of this issue whenonly #63 is actually a duplicate. #63 is a duplicate of #174 who bothrelate to how queued deposits can get stuck in the deposit queue forvarious reasons. #62 however, does not describe anything related toboth the deposit queue and the separate fact that a there is DoS attackvector. Instead, it relates to how relayers can get griefed becauseunrollable rollover items in the rollover queue can aggregate and leadthem to not get paid for their work. In the duplicates, that I will citebelow, this issue is achieved in various different ways but they all lead tothe same impact.Therefore, to reiterate, the #62 and #63 are different because they don'tinvolve the same states, attack vector and users. #63 involve the depositqueue and a DoS attack that lead to economic damage for regular usersof the protocol. #62 involve the rollover queue and a griefing attack thatlead to economic damage for relayers.In my judging repos I market as duplicate of #63: #79 #82 #114 #174#220 #274 #295 #317 #342 #431 #447 and as duplicate of #62: #80#218 #235 #275 #284 #309 #393 #411 #475From what I have seen all or almost all this issue are present here asduplicate of #174. A lot of people submitted them as different issuesbecause they are indeed completely different. I might have made somemistakes in my judging, but it's mostly consistent with what I say above.Specifically, I missed #176 for which I partially agree with the escalationof securitygrid that it should not be a duplicate of #174 but it also shouldnot be a solo finding because it is a duplicate of #62 and its duplicates.You've created a valid escalation for 10 USDC!
32

To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.dmitriiaAgree re 62, here the issues were grouped per 'pop' allowing for variousmanipulations.hrishibhatEscalation acceptedAfter reviewing the issues and all its duplicates, given the complexity as well as thesimilarities between these issues, the fair move would be to split up these issuesinto two categories based on the functions of the root cause: mintDepositInQueue &
mintRollovers. These two categories of duplicates primarily contain issues relatedto large queue lengths resulting in dos or insufficient relayer incentives from thesame root cause.sherlock-adminEscalation acceptedAfter reviewing the issues and all its duplicates, given the complexity aswell as the similarities between these issues, the fair move would be tosplit up these issues into two categories based on the functions of theroot cause: mintDepositInQueue & mintRollovers. These two categoriesof duplicates primarily contain issues related to large queue lengthsresulting in dos or insufficient relayer incentives from the same rootcause.This issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.IAm0x52Issue has been acknowledged by sponsor

33

Issue M-7: changeTreasury() Lack of check and removeold
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/208
Found byHonorLt, VAD37, bin2chen, nobody2018
SummarychangeTreasury() Lack of check and remove old
Vulnerability DetailchangeTreasury() used to set new treasury The code is as follows
function changeTreasury(uint256 _marketId, address _treasury)

public
onlyTimeLocker

{
if (_treasury == address(0)) revert AddressZero();

address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist(_marketId);

}
IVaultV2(vaults[0]).whiteListAddress(_treasury);
IVaultV2(vaults[1]).whiteListAddress(_treasury);
IVaultV2(vaults[0]).setTreasury(treasury);
IVaultV2(vaults[1]).setTreasury(treasury);

emit AddressWhitelisted(_treasury, _marketId);
}

The above code has the following problem:1. no check whether the new treasury same as the old. If it is the same, thewhitelist will be canceled.2. Use setTreasury(VaultFactoryV2.treasury), it should be setTreasury(_treasury)3. not cancel old treasury from the whitelist

34

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/208

ImpactwhiteListAddress abnormal
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228
Tool usedManual Review
Recommendation

function changeTreasury(uint256 _marketId, address _treasury)
public
onlyTimeLocker

{
if (_treasury == address(0)) revert AddressZero();

address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist(_marketId);

}

+ require(vaults[0].treasury() !=_treasury,"same"); //check same
+ IVaultV2(vaults[0]).whiteListAddress(vaults[0].treasury()); //cancel old

whitelist,!

+ IVaultV2(vaults[1]).whiteListAddress(vaults[1].treasury()); //cancel old
whitelist,!

IVaultV2(vaults[0]).whiteListAddress(_treasury);
IVaultV2(vaults[1]).whiteListAddress(_treasury);

+ IVaultV2(vaults[0]).setTreasury(_treasury);
+ IVaultV2(vaults[1]).setTreasury(_treasury);
- IVaultV2(vaults[0]).setTreasury(treasury);
- IVaultV2(vaults[1]).setTreasury(treasury);

emit AddressWhitelisted(_treasury, _marketId);
}

Discussiondmitriia
35

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228

Keeping it separate from 435 because of whitelist observation (1)pauliaxEscalate for 10 USDC.I believe it is unfair to leave it as a solo medium.#410 also mentions the problem with whitelisting: "Also, probably the old treasuryshould be removed from the whitelist to prevent accidental abuse of privileges." butwas grouped together with other issues from #435.sherlock-adminEscalate for 10 USDC.I believe it is unfair to leave it as a solo medium.#410 also mentions the problem with whitelisting: "Also, probably the oldtreasury should be removed from the whitelist to prevent accidentalabuse of privileges." but was grouped together with other issues from#435.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.3xHarryfix Pr: https://github.com/Y2K-Finance/Earthquake/pull/137hrishibhatEscalation acceptedAdded relevant duplicates based on whitelist observationsherlock-adminEscalation acceptedAdded relevant duplicates based on whitelist observationThis issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.IAm0x52Fixes look good. Carousel now directly uses the treasury address sent on factory

36

https://github.com/Y2K-Finance/Earthquake/pull/137

Issue M-8: mintRollovers should require entitledShares>= relayerFee
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/293
Found bycccz, iglyx, roguereddwarf
SummarymintRollovers should require entitledShares >= relayerFee
Vulnerability DetailIn mintRollovers, the rollover is only not skipped if queue[index].assets >=relayerFee,
if (entitledShares > queue[index].assets) {

// skip the rollover for the user if the assets cannot cover the relayer fee
instead of revert.,!

if (queue[index].assets < relayerFee) {
index++;
continue;

}

In fact, since the user is already profitable, entitledShares is the number of assetsof the user, which is greater than queue[index].assets, so it should check thatentitledShares >= relayerFee, and use entitledShares instead ofqueue[index].assets to subtract relayerFee when calculating assetsToMint later.
ImpactThis will prevent rollover even if the user has more assets than relayerFee
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406
Tool usedManual Review

37

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/293
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406

RecommendationChange to
if (entitledShares > queue[index].assets) {

// skip the rollover for the user if the assets cannot cover
the relayer fee instead of revert.,!

- if (queue[index].assets < relayerFee) {
+ if (entitledShares < relayerFee) {

index++;
continue;

}
...
- uint256 assetsToMint = queue[index].assets - relayerFee;
+ uint256 assetsToMint = entitledShares - relayerFee;

Discussion3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/136IAm0x52Needs additional changes. L423 doesn't make sense to me. queue[index].assets isin shares and entitledAmount isn't but they are subtracted directly.3xHarry@IAm0x52 thx for your comment, basically since QueueItem.asset (later renamed toshares) represents share of the epoch, i converted relayerFee which isdenominated in underlying asset to shares for that epoch. Later i realized thatUsers only want to rollover their original deposit value, therefore i burn the originaldeposit Value and mint this value - relayerFeeInShares into the next epoch, thewinnings sahres amount are left in the epoch to be withdrawnjacksanford1Bringing in some Discord discussion:0x52For 293 your comment then conflicts with how you take the fee becauseyou're charging the user the relayer fee for epoch n+1 but you're usingepoch n to estimate. You should just take the fee directly not convert itinto shares3xHarry@0x52 thx for raising this concern: uint256 relayerFeeInShares =previewAmountInShares(queue[index].epochId, relayerFee); converts
38

https://github.com/Y2K-Finance/Earthquake/pull/136

relayerFee into amount of shares of prev epoch (epoch users wants torollover collateral from)uint256 assetsToMint = queue[index].assets - relayerFeeInShares;assets represent shares in prev epoch and arrimetic operation is done insame denominator (shares in queue[index].epochId)0x52Shares and assets are 1:1 for the open epoch correct?So imagine this scenario. You deposit 100 asset into epoch 1 to get 100shares in epoch 1. Now you queue them into the rollover.Epoch 1 ends with a profit of 25% which means your 100 shares are nowworth 125. 80 shares are burned (worth 100 assets) leaving the user with20 shares for epoch 1.If the relayer fee is 10 then it will be converted to 8 shares of epoch 2.But epoch 2 is still 1:1 with assets so it's only taking 8 assets from theuser but sending them 10 asset as the relayer fee So you either need toreduce epoch 1 shares by 8 (i.e. leave the user with 12 shares) or youneed to reduce assetsToMint by relayer fee directly (i.e. only mint 90 toepoch 2)jacksanford1Bringing in some discussion from Y2K's repo:3xHarry@IAm0x52 thx for noticing the relayerFeeInShares Bug I will close thisPR, but fix can be observed in 9165674https://github.com/Y2K-Finance/Earthquake/pull/136#issuecomment-1541996529IAm0x52Fix looks good. Fee is no longer converted since epoch in which fee is removed isalways 1:1

39

https://github.com/Y2K-Finance/Earthquake/pull/136/commits/916567485713007e75d39479c983ea26e7aed607
https://github.com/Y2K-Finance/Earthquake/pull/136#issuecomment-1541996529

Issue M-9: Vault Factory ownership can be changed im-mediately and bypass timelock delay
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/337
Found byast3ros
SummaryThe VaultFactoryV2 contract is supposed to use a timelock contract with a delayperiod when changing its owner. However, there is a loophole that allows the ownerto change the owner address instantly, without waiting for the delay period toexpire. This defeats the purpose of the timelock contract and exposes theVaultFactoryV2 contract to potential abuse.
Vulnerability DetailIn project description, timelock is required when making critical changes. Admincan only configure new markets and epochs on those markets.
2) Admin can configure new markets and epochs on those markets, Timelock can

make cirital changes like changing the oracle or whitelisitng controllers.,!

The VaultFactoryV2 contract has a changeOwner function that is supposed to becalled only by the timelock contract with a delay period.
function changeOwner(address _owner) public onlyTimeLocker {

if (_owner == address(0)) revert AddressZero();
_transferOwnership(_owner);

}

The VaultFactoryV2 contract inherits from the Openzeppelin Ownable contract,which has a transferOwnership function that allows the owner to change the owneraddress immediately. However, the transferOwnership function is not overridden bythe changeOwner function, which creates a conflict and a vulnerability. The ownercan bypass the timelock delay and use the transferOwnership function to changethe owner address instantly.
function transferOwnership(address newOwner) public virtual onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);

}

40

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/337

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
ImpactThe transferOwnership is not worked as design (using timelock), the timelock delaybecome useless. This means that if the owner address is hacked or corrupted, theattacker can take over the contract immediately, leaving no time for the protocoland the users to respond or intervene.
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
Tool usedManual Review
RecommendationOverride the transferOwnership function and add modifier onlyTimeLocker.
DiscussionthangtranthEscalate for 10 USDC.This issue is different from #501 and cannot be ignored. It is not related to usingtwo steps to change ownership. The problem here is that the transferOwnershipfunction in the Ownable contract is not overridden as it should be. This allows theowner to change the ownership without going through the timelock. This creates asevere security risk and undermines the trust and transparency of the protocol asstated in spec.sherlock-adminEscalate for 10 USDC.This issue is different from #501 and cannot be ignored. It is not relatedto using two steps to change ownership. The problem here is that thetransferOwnership function in the Ownable contract is not overridden asit should be. This allows the owner to change the ownership withoutgoing through the timelock. This creates a severe security risk andundermines the trust and transparency of the protocol as stated in spec.

41

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328

You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.hrishibhatEscalation acceptedNot a duplicate of #501 and can be considered a valid medium since this identifiesthe issue that transferOwnership is not overridden and needs to have‘onlyTimeLocker' modifier,sherlock-adminEscalation acceptedNot a duplicate of #501 and can be considered a valid medium since thisidentifies the issue that transferOwnership is not overridden and needsto have ‘onlyTimeLocker' modifier,This issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.hrishibhatLead Judge comment:looks valid, maybe med, if they intend to do it without a delay is one thingand to be documented, but if a function just left not overriden it's a bugSponsor comment:Actually thats valid issue, fixing this will make this action morecomplicated. My thinking is to add a direct function on timelocker whichlets timelocker execute the owner (deployer) change without 7day queue.3xHarryFIX RP: https://github.com/Y2K-Finance/Earthquake/pull/147 - last two commitsIAm0x52Fix looks good. changeOwner has been removed and transferOwnership has beenoverridden to allow only timelocker

42

https://github.com/Y2K-Finance/Earthquake/pull/147

IssueM-10: Carousel.mintRolloverspotentiallymints 0sharesand can grief rollover queue
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/418
Found byberndartmueller, evan, kenzo
SummaryIf the deposited assets for a queued rollover item are equal to the relayer fee, therollover will be minted with 0 shares, potentially leading to zero TVL and hence
finalTVL[_id] = 0. This will cause the previewWithdraw call to revert due to divisionby zero and the rollover queue will be stuck forever.
Vulnerability DetailMinting rollovers in the carousel vault iterates over all items in the rolloverQueuequeue. Each item is processed, and the entitled shares (entitledShares) arecalculated using previewWithdraw. If theentitled shares are greater than the deposited assets), the rollover is minted.However, if the deposited assets for the queued item are equal to the relayer fee,the assets to mint (assetsToMint) calculated in line 436 will be 0.If this happens to be the only deposit (mint) for the epoch and the vaults TVLremains zero, the previewWithdraw call in line 396 will revert due to division by zero.
ImpactOnce there is a rollover minted with 0 shares for an epoch and the vaults TVL (i.e.,
finalTVL) remains zero, the rollover queue will be stuck forever unless the owner ofthis queue item delists it.
Code Snippetsrc/v2/Carousel/Carousel.mintRollovers
361: function mintRollovers(uint256 _epochId, uint256 _operations)
362: external
363: epochIdExists(_epochId)
364: epochHasNotStarted(_epochId)
365: nonReentrant
366: {
... // [...]

43

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/418
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L403
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L366
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L396-L399

392:
393: while ((index - prevIndex) < (_operations)) {
394: // only roll over if last epoch is resolved
395: if (epochResolved[queue[index].epochId]) {
396: @> uint256 entitledShares = previewWithdraw(// @audit-info

reverts if epoch's `finalTVL` == 0,!

397: queue[index].epochId,
398: queue[index].assets
399:);
400: // mint only if user won epoch he is rolling over
401: if (entitledShares > queue[index].assets) {
402: // skip the rollover for the user if the assets cannot

cover the relayer fee instead of revert.,!

403: if (queue[index].assets < relayerFee) {
404: index++;
405: continue;
406: }
407: // @note we know shares were locked up to this point
408: _burn(
409: queue[index].receiver,
410: queue[index].epochId,
411: queue[index].assets
412:);
413: // transfer emission tokens out of contract otherwise user

could not access them as vault shares are burned,!

414: _burnEmissions(
415: queue[index].receiver,
416: queue[index].epochId,
417: queue[index].assets
418:);
419: // @note emission token is a known token which has no

before transfer hooks which makes transfer safer,!

420: emissionsToken.safeTransfer(
421: queue[index].receiver,
422: previewEmissionsWithdraw(
423: queue[index].epochId,
424: queue[index].assets
425:)
426:);
427:
428: emit Withdraw(
429: msg.sender,
430: queue[index].receiver,
431: queue[index].receiver,
432: _epochId,
433: queue[index].assets,
434: entitledShares
435:);

44

436: @> uint256 assetsToMint = queue[index].assets - relayerFee; //
@audit-info `assetsToMint` can potentially become 0,!

437: _mintShares(queue[index].receiver, _epochId, assetsToMint);
438: emit Deposit(
439: msg.sender,
440: queue[index].receiver,
441: _epochId,
442: assetsToMint
443:);
444: rolloverQueue[index].assets = assetsToMint;
445: rolloverQueue[index].epochId = _epochId;
446: // only pay relayer for successful mints
447: executions++;
448: }
449: }
450: index++;
451: }
452:
... // [...]
459: }

src/v2/VaultV2.previewWithdraw
357: function previewWithdraw(uint256 _id, uint256 _assets)
358: public
359: view
360: override(SemiFungibleVault)
361: returns (uint256 entitledAmount)
362: {
363: // entitledAmount amount is derived from the claimTVL and the finalTVL
364: // if user deposited 1000 assets and the claimTVL is 50% lower than

finalTVL, the user is entitled to 500 assets,!

365: // if user deposited 1000 assets and the claimTVL is 50% higher than
finalTVL, the user is entitled to 1500 assets,!

366: entitledAmount = _assets.mulDivDown(claimTVL[_id], finalTVL[_id]);
367: }

Tool usedManual Review
RecommendationConsider checking the total assets of the epoch queue[index].epochId to begreater than 0 before calling previewWithdraw in line 396.

45

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L366

Discussion3xHarrywill move check from line 403 up before previewWithdraw, also consideringimplementing rollover delisting if assetsToMint is less than relayerFee3xHarryin general delisting of stale rollovers (not enough to pay for relayer, or not won prevepoch) should be delisted by smart contract.3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/133IAm0x52Needs additional changes. This still doesn't address the issue of minting 0 becauseif assets == relayerFee then it will still mint 0. Should instead be:
if (queue[index].assets <= relayerFee) {IAm0x52Fix looks good. Suggested change above has been addedjacksanford1Note: 0x52 referenced this commit in their second message from PR #133:https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7c61bef4a8847f7c107f2b630

46

https://github.com/Y2K-Finance/Earthquake/pull/133
https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7c61bef4a8847f7c107f2b630
https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7c61bef4a8847f7c107f2b630

IssueM-11: Arbitrumsequencerdowntime lastingbeforeand beyond epoch expiry prevents triggering depeg
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/422
Found byDug, Respx, ShadowForce, berndartmueller, holyhansss, libratus, ltyu, spyrosonic10
SummaryA depeg event can not be triggered if the Arbitrum sequencer went down beforethe epoch ends and remains down beyond the epoch expiry. Instead, the collateralvault users can unfairly end the epoch without a depeg and claim the premiumpayments.
Vulnerability DetailA depeg event can be triggered during an ongoing epoch by calling the
ControllerPeggedAssetV2.triggerDepeg function. This function retrieves the latestprice of the pegged asset via the getLatestPrice function.If the Arbitrum sequencer is down or the grace period has not passed after thesequencer is back up, the getLatestPrice function reverts and the depeg event cannot be triggered.In case the sequencer went down before the epoch expired and remained downwell after the epoch expired, a depeg can not be triggered, and instead, the epochcan be incorrectly ended without a depeg by calling the
ControllerPeggedAssetV2.triggerEndEpoch function. Incorrectly, because at thetime of the epoch expiry, it was not possible to trigger a depeg and hence it wouldbe unfair to end the epoch without a depeg.
ImpactA depeg event can not be triggered, and premium vault users lose out on theirinsurance payout, while collateral vault users can wrongfully end the epoch andclaim the premium.
Code Snippetv2/Controllers/ControllerPeggedAssetV2.sol - triggerDepeg()
051: function triggerDepeg(uint256 _marketId, uint256 _epochId) public {
052: address[2] memory vaults = vaultFactory.getVaults(_marketId);
053:

47

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/422
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L62

054: if (vaults[0] == address(0) || vaults[1] == address(0))
055: revert MarketDoesNotExist(_marketId);
056:
057: IVaultV2 premiumVault = IVaultV2(vaults[0]);
058: IVaultV2 collateralVault = IVaultV2(vaults[1]);
059:
060: if (premiumVault.epochExists(_epochId) == false) revert EpochNotExist();
061:
062: int256 price = getLatestPrice(premiumVault.token());
063:
064: if (int256(premiumVault.strike()) <= price)
065: revert PriceNotAtStrikePrice(price);
066:
... // [...]
138: }

v2/Controllers/ControllerPeggedAssetV2.sol - getLatestPrice()
273: function getLatestPrice(address _token) public view returns (int256) {
274: (
275: ,
276: /*uint80 roundId*/
277: int256 answer,
278: uint256 startedAt, /*uint256 updatedAt*/ /*uint80 answeredInRound*/
279: ,
280:
281:) = sequencerUptimeFeed.latestRoundData();
282:
283: // Answer == 0: Sequencer is up
284: // Answer == 1: Sequencer is down
285: bool isSequencerUp = answer == 0;
286: if (!isSequencerUp) {
287: revert SequencerDown();
288: }
289:
290: // Make sure the grace period has passed after the sequencer is back up.
291: uint256 timeSinceUp = block.timestamp - startedAt;
292: if (timeSinceUp <= GRACE_PERIOD_TIME) {
293: revert GracePeriodNotOver();
294: }
295:
... // [...]
318: }

Tool usedManual Review
48

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L287

RecommendationConsider adding an additional "challenge" period (with reasonable length of time)after the epoch has expired and before the epoch end can be triggered without adepeg.Within this challenge period, anyone can claim a depeg has happened during theepoch's expiry and trigger the epoch end. By providing the Chainlink round id's forboth feeds (sequencer and price) at the time of the epoch expiry (epochEnd), theclaim can be verified to assert that the sequencer was down and the strike pricewas reached.
Discussion3xHarryWe are aware of this mechanic, however, users prefer to have the atomicity ofinstant settlement, this is so that users can utilize farming y2k tokens mosteffectively by rotating from one epoch to the next. Users are made aware of therisks when using chainlink oracles as well as the execution environment being onArbitrum.pauliaxEscalate for 10 USDC.I believe this should be low severity because it falls under the misbehaving ofinfrastructure and integrations:Q: In case of external protocol integrations, are the risks of an external protocolpausing or executing an emergency withdrawal acceptable? If not,Watsons willsubmit issues related to these situations that can harm your protocol'sfunctionality. A: [NOT ACCEPTABLE]sherlock-adminEscalate for 10 USDC.I believe this should be low severity because it falls under themisbehaving of infrastructure and integrations:Q: In case of external protocol integrations, are the risks of an externalprotocol pausing or executing an emergency withdrawal acceptable?If not,Watsons will submit issues related to these situations that canharm your protocol's functionality. A: [NOT ACCEPTABLE]You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.

49

hrishibhatEscalation rejectedValid medium This is a valid issue as the readme indicates that risks associatedwith external integrations are not acceptable. That means issues are acceptable.However, Sherlock acknowledges the escalator's concern about some of theseissues and will consider addressing them in the next update of the judgingguidelines.sherlock-adminEscalation rejectedValid medium This is a valid issue as the readme indicates that risksassociated with external integrations are not acceptable. That meansissues are acceptable.However, Sherlock acknowledges the escalator's concern about some ofthese issues and will consider addressing them in the next update of thejudging guidelines.This issue's escalations have been rejected!Watsons who escalated this issue will have their escalation amount deducted fromtheir next payout.IAm0x52Issue has been acknowledged by sponsor

50

IssueM-12: VaultFactoryV2#changeTreasurymisconfig-ures the vault
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/435
Found by0x52, 0xnirlin, Dug, ElKu, TrungOre, ast3ros, holyhansss, ni8mare, roguereddwarf,spyrosonic10, volodya, warRoom
SummaryVaultFactoryV2#changeTreasury misconfigures the vault because the setTreasurysubcall uses the wrong variable
Vulnerability DetailVaultFactoryV2.sol#L228-L246
function changeTreasury(uint256 _marketId, address _treasury)

public
onlyTimeLocker

{
if (_treasury == address(0)) revert AddressZero();

address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist(_marketId);

}

IVaultV2(vaults[0]).whiteListAddress(_treasury);
IVaultV2(vaults[1]).whiteListAddress(_treasury);
IVaultV2(vaults[0]).setTreasury(treasury);
IVaultV2(vaults[1]).setTreasury(treasury);

emit AddressWhitelisted(_treasury, _marketId);
}

When setting the treasury for the underlying vault pair it accidentally use thetreasury variable instead of _treasury. This means it uses the local VaultFactoryV2treasury rather than the function input.ControllerPeggedAssetV2.sol#L111-L123

51

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/435
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228-L246
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L111-L123

premiumVault.sendTokens(_epochId, premiumFee, treasury);
premiumVault.sendTokens(

_epochId,
premiumTVL - premiumFee,
address(collateralVault)

);
// strike price is reached so collateral is still entitled to premiumTVL -

premiumFee but looses collateralTVL,!

collateralVault.sendTokens(_epochId, collateralFee, treasury);
collateralVault.sendTokens(

_epochId,
collateralTVL - collateralFee,
address(premiumVault)

);

This misconfiguration can be damaging as it may cause the triggerDepeg call in thecontroller to fail due to the sendToken subcall. Additionally the time lock is the onerequired to call it which has a minimum of 3 days wait period. The result is thatvalid depegs may not get paid out since they are time sensitive.
ImpactValid depegs may be missed due to misconfiguration
Code SnippetControllerPeggedAssetV2.sol#L51-L138
Tool usedManual Review
RecommendationSet to _treasury rather than treasury.
Discussion3xHarrygood catch!3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/132IAm0x52

52

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L51-L138
https://github.com/Y2K-Finance/Earthquake/pull/132

Fix looks good. setTreasury now correctly uses _treasury rather than treasury

53

Issue M-13: Null epochs will freeze rollovers
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/442
Found by0x52, berndartmueller, bin2chen, iglyx, p0wd3r
SummaryWhen rolling a position it is required that the user didn't payout on the last epoch.The issue with the check is that if a null epoch is triggered then rollovers will breakeven though the vault didn't make a payout
Vulnerability DetailCarousel.sol#L401-L406
uint256 entitledShares = previewWithdraw(

queue[index].epochId,
queue[index].assets

);
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

When minting rollovers the following check is made so that the user won'tautomatically roll over if they made a payout last epoch. This check however will failif there is ever a null epoch. Since no payout is made for a null epoch it shouldcontinue to rollover but doesn't.
ImpactRollover will halt after null epoch
Code SnippetCarousel.sol#L361-L459
Tool usedManual Review
RecommendationChange to less than or equal to:

54

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/442
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459

- if (entitledShares > queue[index].assets) {
+ if (entitledShares >= queue[index].assets) {

Discussion3xHarrymakes sense3xHarryWon't be able to fix this edge case. Changes in the rollover queue make it now thatpositions are not deleted anymore but rather marked to 0 to prevent rollover queuemanipulation. In this case, users would have to resolve their stuck rollover positionmanually. https://github.com/Y2K-Finance/Earthquake/pull/127IAm0x52Issue has been acknowledged by sponsor

55

https://github.com/Y2K-Finance/Earthquake/pull/127

Issue M-14: Inconsistent use of epochBegin could lockuser funds
Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/480
Found byInspex, KingNFT, TrungOre, b4by_y0d4, berndartmueller, datapunk, evan,minhtrng, roguereddwarf, sinarette, toshii, volodya, yixxas
SummaryThe epochBegin timestamp is used inconsistently and could lead to user fundsbeing locked.
Vulnerability DetailThe function ControllerPeggedAssetV2.triggerNullEpoch checks for timestamp likethis:
if (block.timestamp < uint256(epochStart)) revert EpochNotStarted();

The modifier epochHasNotStarted (used by Carousel.deposit) checks it like this:
if (block.timestamp > epochConfig[_id].epochBegin)

revert EpochAlreadyStarted();

Both functions can be called when block.timestamp == epochBegin. This could leadto a scenario where a deposit happens after triggerNullEpoch is called (both in thesame block). Because triggerNullEpoch sets the value for finalTVL, the TVL thatcomes from the deposit is not accounted for. If emissions have been distributedthis epoch, this will lead to the incorrect distribution of emissions and once allemissions have been claimed the remaining assets will not be claimable, due toreversion in withdraw when trying to send emissions:
function previewEmissionsWithdraw(uint256 _id, uint256 _assets)

public
view
returns (uint256 entitledAmount)

{
entitledAmount = _assets.mulDivDown(emissions[_id], finalTVL[_id]);

}
...
//in withdraw:
uint256 entitledEmissions = previewEmissionsWithdraw(_id, _assets);

56

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/480

if (epochNull[_id] == false) {
entitledShares = previewWithdraw(_id, _assets);

} else {
entitledShares = _assets;

}
if (entitledShares > 0) {

SemiFungibleVault.asset.safeTransfer(_receiver, entitledShares);
}
if (entitledEmissions > 0) {

emissionsToken.safeTransfer(_receiver, entitledEmissions);
}

The above could also lead to revert through division by 0 if finalTVL is set to 0,even though the deposit after was successful.
Impactincorrect distribution, Loss of deposited funds
Code Snippethttps://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30edfa548f7ae1aef/Earthquake/src/v2/VaultV2.sol#L433
Tool usedManual Review
RecommendationThe modifier epochHasNotStarted should use >= as comparator
Discussion3xHarryfix PR: https://github.com/Y2K-Finance/Earthquake/pull/130IAm0x52Fix looks good to me. Small inequality change for consistency

57

https://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30edfa548f7ae1aef/Earthquake/src/v2/VaultV2.sol#L433
https://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30edfa548f7ae1aef/Earthquake/src/v2/VaultV2.sol#L433
https://github.com/Y2K-Finance/Earthquake/pull/130

