SHERLOCK SECURITY REVIEW FOR

Prepared for: Y2K

Prepared by: Sherlock

Lead Security Expert: 0x52

Dates Audited: March 13 - March 27,2023

Prepared on: May 22,2023

https://github.com/IAm0x52

Y2K is a crypto-native take on structured products on-chain. The protocol creates
liquid markets for hedging, leveraging, speculating and trading.

Repository: Y2K-Finance/Earthquake
Branch: earthquake-v2-sherlock-audit
Commit: 736b2e1e51bef6daabaSecdldecb7d156316d795

For the detailed scope, see the contest details.

Each issue has an assigned severity:

* Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
14 5
Medium
0 0
ast3ros iglyx cccz
bin2chen nobody2018 VAD37
roguereddwarf evan Ruhum
berndartmueller kenzo Dug

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/README.md#audit-scope
https://github.com/thangtranth
https://github.com/bin2chen66
https://github.com/roguereddwarf
https://github.com/berndartmueller
https://github.com/iglyx
https://github.com/securitygrid
https://github.com/EvanYu0816
https://github.com/KenzoAgada
https://github.com/thereksfour
https://github.com/VAD37
https://github.com/0xruhum
https://github.com/dugdaniels

0x52
HonorLt

TrungOre

hickuphh3
immeas

&

Res

EL
S)
Q)
~
c [X
wn

pOwd3r
minhtrng
warRoom
jprod15
ShadowForce
spyrosonic10

holyhansss
mstpr-brainbot

yixxas
toshii
twicek
OxRobocop
Inspex

Ace-30
Ch_301
sinarette
ElKu

carrot

ck

volodya
csanuragjain
OxXmuxyz

joestakey
Bauer

charlesjhongc

OKage
Oxnirlin

J4de
KingNFT
ni8mare
datapunk

b4by_y0d4
Emmanuel

AlexCzm

BPZ

bulej93
climber2002

Oxvj
DelvirO

Saeedalipoor01988

ABA
l[emonmon

kaysoft
martin

peanuts
zeroknots
shaka
auditor0517
neOn

pfapostol
jasonxiale

OxMojito
Junnon

OxPkhatri
Aymen0909

'/ SHERLOCK

https://github.com/IAm0x52
https://github.com/pauliax
https://github.com/WelToHackerLand
https://github.com/hickuphh3
https://github.com/0ximmeas
https://github.com/ltyu
https://github.com/Respx
https://github.com/kiseln
https://github.com/imp0wd3r
https://github.com/Minh-Trng
https://github.com/warRoom
https://github.com/jesusrod15
https://github.com/ShadowForce
https://github.com/spyrosonic10
https://github.com/holyhansss
https://github.com/mstpr
https://github.com/yixxas
https://github.com/0xtoshii
https://github.com/twicek
https://github.com/0xRobocop
https://github.com/InspexAuditor
https://github.com/AceRivers-3
https://github.com/Ch-301
https://github.com/sinarette
https://github.com/El-Ku
https://github.com/carrotsmuggler
https://github.com/iamckn
https://github.com/0xVolodya
https://github.com/csanuragjain
https://github.com/masaun
https://github.com/joestakey
https://github.com/sleepriverfish
https://github.com/charlesjhongc
https://github.com/0kage-eth
https://github.com/ahmaddecoded
https://github.com/yttriumzz
https://github.com/ydspa
https://github.com/NishithPat
https://github.com/0xDatapunk
https://github.com/dhanjani
https://github.com/Emedudu
https://github.com/AlexCZM
https://github.com/BPZ
https://github.com/bulej93
https://github.com/climber2002
https://github.com/0xvj
https://github.com/Delvir0
https://github.com/saeedalipoorcom
https://github.com/abarbatei
https://github.com/lemonmon1984
https://github.com/kayroy247
https://github.com/martin-petrov03
https://github.com/cryptostaker2
https://github.com/zeroknots
https://github.com/shaka0x
https://github.com/auditor0517
https://github.com/ne0n2396
https://github.com/PFAhard
https://github.com/crazy4linux
https://github.com/mojito-auditor
https://github.com/jraynaldi3
https://github.com/0xPkhatri
https://github.com/kaymen99

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/2

Found by

OKage, 0x52, 0xMojito, OxPkhatri, OxRobocop, Oxnirlin, AlexCzm, Aymen0909,
Bauer, Ch_301, Dug, EIKu, Emmanuel, HonorLt, Junnon, Respx, TrungOre, VAD37,
ast3ros, auditor0517, berndartmueller, bin2chen, cccz, charlesjhongc, ck,
climber2002, csanuragjain, datapunk, evan, hickuphh3, holyhansss, iglyx, immeas,
jasonxiale, joestakey, kenzo, libratus, Ityu, minhtrng, mstpr-brainbot, neOn,
pfapostol, roguereddwarf, shaka, sinarette, spyrosonic10, toshii, twicek, volodya,
warRoom, yixxas, zeroknots

Summary

In the case where the owner has an existing rollover, the
ownerToRoll0verQueueIndex incorrectly updates to the last queue index. This
causes the notRollingOver check to be performed on the incorrect _id, which then
allows the depositor to withdraw funds that should've been locked.

Vulnerability Detail

In enlistInRollover (), if the user has an existing rollover, it overwrites the existing
data:

if (ownerToRollOverQueuelIndex[_receiver] != 0) {
// if so, update the queue
uint256 index = getRolloverIndex(_receiver);
rolloverQueue[index] .assets = _assets;
rolloverQueue [index] .epochId = _epochld;

However, regardless of whether the user has an existing rollover, the
ownerToRolloverQueueIndex points to the last item in the queue:

ownerToRoll0verQueueIndex[_receiver] = rolloverQueue.length;

Thus, the notRollingOver modifier will check the incorrect item for users with
existing rollovers:

Queueltem memory item = rolloverQueue[getRolloverIndex(_receiver)];
if (
item.epochld == _epochld &&

3 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/2

(balanceOf (_receiver, _epochId) - item.assets) < _assets
) revert AlreadyRollingQOver () ;

allowing the user to withdraw assets that should've been locked.

Impact

Users are able to withdraw assets that should've been locked for rollovers.

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L252-L257 https://github.com/sherlock-audit/2023-03-Y2K/bl
ob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L755-L760

Tool used

\YERTEIREVIE

Recommendation

The ownerToRoll0verQueueIndex should be pointing to the last item in the queue in
the else case only: when the user does not have an existing rollover queue item.

} else {
// if not, add to queue
rolloverQueue.push(
QueueItem({
assets: _assets,
receiver: _receiver,
epochId: _epochId
b
bE

+ ownerToRollOverQueueIndex[_receiver] = rolloverQueue.length;

- ownerToRoll0OverQueueIndex[_receiver] rolloverQueue.length;

Discussion
3xHarry
good catch

3xHarry

q @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L252-L257
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L252-L257
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L755-L760
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L755-L760

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/128
IAmOx52

Fix looks good. Assigning index has been moved inside else block

5 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/128

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/72

Found by

BPZ, Ch_301, Dug, Emmanuel, J4de, Ruhum, TrungOre, ast3ros, berndartmueller,
bin2chen, evan, hickuphh3, immeas, jprod15, kenzo, Ityu, minhtrng, mstpr-brainbot,
nobody2018, roguereddwarf, sinarette, spyrosonic10, toshii, twicek

Summary

The current implementation enables users who are earlier in the queue to grief
those who are later.

Vulnerability Detail

There is a rolloverAccounting mapping that, for every epoch, tracks the current
index of the queue for which mints have been processed up to thus far.

When a user delists from the queue, the last user enlisted will replace the delisted
user's queue index.

It is thus possible for the queue to be processed up to, or past, the delisted user's
queue index, but before the last user has been processed, the processed user
delists, thus causing the last user to not have his funds rollover.

POC

1. Alice enlists into the queue (index 1), then Bob (index 2)

2. Alice (or a relayer) calls mintRollovers () with _operations = 1, and Alice has
her funds rollover.

3. Alice delists from the rollover.
Bob is then unable to have his funds rollover until the next epoch is created, unless
he delists and re-enlists into the queue (defeating the purpose of rollover
functionality).

Impact

Whether accidental or deliberate, it is possible for users to not have their funds
rollover.

5 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/72

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car

ousel/Carousel.sol#L293-1L.296

Tool used

\YERTEIRREVIEY

Recommendation

Instead of specifying the number of operations to execute, consider having start
and end indexes, with a boolean mapping to track if a user's rollover has been
processed.

Discussion
3xHarry

keeping track of rollovers with a mapping would increase gas cost substantially,
however it would be a better solution than blocking delisting during deposit period

3xHarry

setting assets to O instead of removing the Queueltem from the array sounds like a
more reasonable approach, given that it's very unlikely for the rollover queue array
length to reach the max size. Also, there can be more markets with similar strike
prices deployed at any time.

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/127
OxRobocop

Escalate for 10 USDC

This is a valid low issue but not a high or med

This is more of an inconvenience for the user and there is no loss:

"User experience and design improvement issues: Issues that cause minor
inconvenience to users where there is no material loss of funds are not considered
valid. Funds are temporarily stuck and can be recovered by the administrator or
owner. Also, if a submission is a design opinion/suggestion without any clear
indications of loss of funds is not a valid issue."

There is also a little guideline to identify highs and meds. Pay attention to "should
not be easily replaced without loss of funds" which is not the case in this issue.

sherlock-admin

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L293-L296
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L293-L296
https://github.com/Y2K-Finance/Earthquake/pull/127
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-high-issue
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-medium-issue

Escalate for 10 USDC
This is a valid low issue but not a high or med
This is more of an inconvenience for the user and there is no loss:

"User experience and design improvement issues: Issues that cause
minor inconvenience to users where there is no material loss of funds are
not considered valid. Funds are temporarily stuck and can be recovered
by the administrator or owner. Also, if a submission is a design
opinion/suggestion without any clear indications of loss of funds is not a
valid issue."

There is also a little guideline to identify highs and meds. Pay attention to
"should not be easily replaced without loss of funds" which is not the
case in this issue.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

dmitriia

Not agree with the escalation, that's core logic flaw with a range of material
impacts, definitely high.

hrishibhat

Escalation rejected

Based on the issue and its duplicates and their impacts, considering this issue as a
valid high since it breaks the core functionality.

sherlock-admin
Escalation rejected

Based on the issue and its duplicates and their impacts, considering this
issue as a valid high since it breaks the core functionality.

This issue's escalations have been rejected!

Watsons who escalated this issue will have their escalation amount deducted from
their next payout.

IAmOx52

Needs additional changes. Using isEnlistedInRolloverQueue causes duplicate
entries that can't be removed

IAmMOx52

8 @/ SHERLOCK

https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-high-issue
https://docs.sherlock.xyz/audits/judging/judging#how-to-identify-a-medium-issue

Fix looks good. isEnlistedInRolloverQueue has been changed making it impossible
to have duplicate entries

jacksanford1
Note: 0x52's last message is in reference to this commit:

https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7
a3a7d4668ff123bffb2ff21

9 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7a3a7d4668ff123bffb2ff21
https://github.com/Y2K-Finance/Earthquake/pull/127/commits/1d1ac0a3411208cc7a3a7d4668ff123bffb2ff21

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/75

Found by

OxRobocop, Ace-30, AlexCzm, Ch_301, Dug, EIKu, Inspex, J4de, Respx, Ruhum,
ShadowForce, TrungOre, VAD37, ast3ros, bulej93, evan, hickuphh3, iglyx, immeas,
kenzo, minhtrng, roguereddwarf, toshii, yixxas

Summary

The deposit fee can be circumvented by a queue deposit + mintDepositInQueue ()
call in the same transaction.

Vulnerability Detail

A deposit fee is charged and increases linearly within the deposit window.
However, this fee can be avoided if one deposits into the queue instead, then mints
his deposit in the queue.

POC

Assume non-zero depositFee, valid epoch _id = 1. At epoch end, instead of calling
deposit (1, _assets, OxAlice), Alice writes a contract that performs
deposit (0, _assets,0OxAlice) + mintDepositInQueue(1,1) to mint her deposit in the
same tx (her deposit gets processed first because FILO system) . She pockets the
relayerFee, essentially paying zero fees instead of incurring the depositFee.

Impact

Loss of protocol fee revenue.

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car

ousel/Carousel.sol#L494-L500 https://github.com/sherlock-audit/2023-03-Y2K/bl

ob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car

ousel/Carousel.sol#L354

Tool used

\YERTEIRREVIEY

10 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/75
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L494-L500
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L494-L500
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L332-L333
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L354
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L354

Recommendation

Because of the FILO system, charging the dynamic deposit fee will be unfair to
queue deposits as they're reliant on relayers to mint their deposits for them.
Consider taking a proportion of the relayer fee.

Discussion
3xHarry

This is a valid issue. We will apply depositFee to all mints (queue and direct).
However, given that queue has the potential to affect when users's shares are
minted because of FILO, min deposit has to be raised for the queue, to make it
substantially harder to DDoS the queue. Minimizing DDoS queue deposits will lead
to queue deposits getting the least fees as relayers can mint from the first second
the epoch is created.

3xHarry
fix PR: https://github.com/Y2K-Finance/Earthquake/pull/126
3xHarry

@IAmOx52 to elaborate on this issue: relayers are incentivized to mint the
depositQueue from the second a new epoch is created to extract the most amount
of relayerFees. In fact Y2K will have a build in relayerinfra into the deployment
process. The assumption is, that queueDeposit users will pay a minimal Fee. The
attack factor of the queue beeing to long leading to prolonged queue deposit
executions will be mitigated by adding a significant deposit requirement for queue
deposits. These measures will mitigate high deposit Fees for Queue deposits as
well as prevent late direct depositors using the queue to evade the depositFee.

jacksanford1
Bringing in this discussion from Discord:
0x52

As a follow up for PR126. You keep the minRequiredDeposit modifier on
enlistinRollover but the way you modified it, it can only apply if epochid
== 0 but enlistInRollover doesn't work for epochld == 0 so the modifier is
useless on that function. My suggestion would be to either remove it if
you no longer need that protection or make a new modifier specifically
designed for enlistinRollover

3xHarry

regarding [issue] 75 / PR 126 fixed in
https://github.com/Y2K-Finance/Earthquake/pull/126/commits/9¢c659161
dc952df99201b99d4ea54e9ddab42ech

T @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/126
https://github.com/Y2K-Finance/Earthquake/pull/126/commits/9c659161dc952df99201b99d4ea54e9dda642ecb
https://github.com/Y2K-Finance/Earthquake/pull/126/commits/9c659161dc952df99201b99d4ea54e9dda642ecb

IAmOx52

Fix looks good. enlistinRollover now applies a minimum deposit requirement

7 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/163

Found by

Ace-30, Inspex, TrungOre, VAD37, berndartmueller, bin2chen, carrot, cccz,
charlesjhongc, evan, hickuphh3, iglyx, immeas, kenzo, minhtrng, mstpr-brainbot,
nobody2018, roguereddwarf, toshii, warRoom

Summary

When mintRollovers is called, when the function mints shares for the new epoch
for the user, the amount of shares minted will be the same as the original assets he
requested to rollover - not including the amount he won. After this, all these asset
shares from the previous epoch are burnt. So the user won't be able to claim his
winnings.

Vulnerability Detail

When user requests to enlistinRollover, he supplies the amount of assets to
rollover, and this is saved in the queue.

rolloverQueue[index] .assets = _assets;

When mintRollovers is called, the function checks if the user won the previous
epoch, and proceeds to burn all the shares the user requested to roll:

if (epochResolved[queue[index] .epochId]) {
uint256 entitledShares = previewWithdraw(
queue [index] . epochId,
queue [index] .assets
)
// mint only if user won epoch he is rolling over
if (entitledShares > queuel[index].assets) {

// @note we know shares were locked up to this point
_burn(

queue [index] .receiver,

queue [index] . epochld,

queue [index] .assets

)

13 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/163
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L411

Then, and this is the problem, the function mints to the user his original assets -
assetsToMint - and not entitledShares.

uint256 assetsToMint = queue[index].assets - relayerFee;
_mintShares(queue[index] .receiver, _epochIld, assetsToMint);

So the user has only rolled his original assets, but since all his share of them is
burned, he will not be able anymore to claim his winnings from them.

Note that if the user had called withdraw instead of rolling over, all his shares would
be burned, but he would receive his entitledShares, and not just his original assets.
We can see in this in withdraw. Note that _assets is burned (like in minting rollover)

but entitledShares is sent (unlike minting rollover, which only remints _assets.)

_burn(_owner, _id, _assets);
_burnEmissions(_owner, _id, _assets);
uint256 entitledShares;
uint256 entitledEmissions = previewEmissionsWithdraw(_id, _assets);
if (epochNull[_id] == false) {
entitledShares = previewWithdraw(_id, _assets);
} else {
entitledShares = _assets;

}
if (entitledShares > 0) {
SemiFungibleVault.asset.safeTransfer (_receiver, entitledShares);
}
if (entitledEmissions > 0) {
emissionsToken.safeTransfer(_receiver, entitledEmissions);

Impact

User will lose his rewards when rolling over.

Code Snippet

if (epochResolved[queue[index] .epochId]) {
uint256 entitledShares = previewWithdraw(
queue [index] .epochld,
queue [index] .assets
)3
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

// @note we know shares were locked up to this point
_burn(

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L437

‘ queue [index] .receiver,
| queue [index] .epochId,

‘ queue [index] .assets
\

Tool used

Manual Review

Recommendation

Either remint the user his winnings also, or if you don't want to make him roll over
the winnings, change the calculation so he can still withdraw his shares of the
winnings.

Discussion

3xHarry

this makes total sense! thx for catching this!
3xHarry

will have to calculate how much his original deposit is worth in entitledShares and
rollover the specified amount

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/125

IAmOx52

Needs additional changes. This will revert if diff is too high due to underflow in L412
IAmOx52

Fix looks good. Point of underflow has been removed in a subsequent PR

jacksanford1
Note: Subsequent PR 0x52 is referencing refers to this commit:

https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87
dab12166dd060bfd8dd742ecb

15 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/125
https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87da612166dd060bfd8dd742ecb
https://github.com/Y2K-Finance/Earthquake/pull/125/commits/3732a7075348e87da612166dd060bfd8dd742ecb

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/468

Found by

0x52, OxRobocop, Bauer, HonorLt, Respx, Ruhum, VAD37, bin2chen, immeas,
joestakey, jprod15, libratus, Ityu, mstpr-brainbot, nobody2018, roguereddwarf,
warRoom, yixxas

Summary

Vulnerability Detail
Carousel.sol#L531-L538

function _mintShares(
address to,
uint256 id,
uint256 amount
) internal {
_mint(to, id, amount, EMPTY);
_mintEmissions(to, id, amount);

When processing deposits for the deposit queue, it _mintShares to the specified
receiver which makes a _mint subcall.

ERC1155.s01#L263-L278

function _mint(address to, uint256 id, uint256 amount, bytes memory data)
— intermal virtual {
require(to != address(0), "ERC1155: mint to the zero address");

address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount) ;

_beforeTokenTransfer (operator, address(0), to, ids, amounts, data);

_balances[id] [to] += amount;
emit TransferSingle(operator, address(0), to, id, amount);

_afterTokenTransfer(operator, address(0), to, ids, amounts, data);

16 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/468
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L531-L538
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ca822213f2275a14c26167bd387ac3522da67fe9/contracts/token/ERC1155/ERC1155.sol#L263-L278

‘ _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data); ‘

B |
\ |

The base ERC1155 _mint is used which always behaves the same way that ERC721
safeMint does, that is, it always calls _doSafeTrasnferAcceptanceCheck which
makes a call to the receiver. A malicious user can make the receiver always revert.
This breaks the deposit queue completely. Since deposits can't be canceled this
WILL result in loss of funds to all users whose deposits are blocked. To make
matters worse it uses first in last out so the attacker can trap all deposits before
them

Impact

Users who deposited before the adversary will lose their entire deposit

Code Snippet
Carousel.sol#L310-L355

Tool used

Manual Review

Recommendation

Override _mint to remove the safeMint behavior so that users can't DOS the deposit
queue

Discussion
3xHarry

agree with this issue, there is no easy solution to this, as by definition when
depositing into queue, the user gives up the atomicity of his intended mint.
Looking at Openzeppelins 1155 implementation guide it is recommended to ensure
the receiver of the asset is able to call safeTransferFrom. By removing the
acceptance check in the _mint function, funds could be stuck in a smart contract.

Another alternative would be to do the 1155 acceptance check in the mint function
and confiscate the funds if the receiver is not able to hold 1155s. The funds could
be retrieved via a manual process from the treasury afterward.

3xHarry
going with Recommendation is prob the easiest way

3xHarry

17 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310-L355
https://docs.openzeppelin.com/contracts/3.x/erc1155

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/124
IAmOx52

Fix looks good. _mint no longer calls acceptance check so rollover can longer be
DOS'd by it

18 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/124

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/70

Found by

OxRobocop, Oxnirlin, ABA, Ch_301, DelvirO, Saeedalipoor01988, ShadowForce,
TrungOre, ast3ros, bin2chen, carrot, evan, kaysoft, lemonmon, martin, minhtrng,
pOwd3r, peanuts, roguereddwarf

Summary

The updatedAt timestamp in the price feed response is not checked. So outdated
prices may be used.
Vulnerability Detail

The following checks are performed for the chainlink price feed:
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con

trollers/ControllerPeggedAssetV2.s0l#L299-L315

As you can see the updatedAt timestamp is not checked. So the price may be
outdated.

Impact

The price that is used by the Controller can be outdated. This means that a depeg
event may be caused due to an outdated price which is incorrect. Only current
prices must be used to check for a depeg event.

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con

trollers/ControllerPeggedAssetV2.sol#L273-L318

Tool used

Manual Review

Recommendation

Introduce a reasonable limit for how old the price can be and revert if the price is
older:

19 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/70
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L299-L315
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L299-L315
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L273-L318
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L273-L318

iff --git a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
-~ b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
index 0587c86..cf2dcfb 100644
--- a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.so0l
+++ b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
@@ -275,8 +275,8 @@ contract ControllerPeggedAssetV2 {
/*uint80 roundId*/
int256 answer,
- uint256 startedAt, /#uint256 updatedAt*/ /#uint80 answeredInRound*/
F uint256 startedAt,
+ uint256 updatedAt, /*uint80 answeredInRound*/

) = sequencerUptimeFeed.latestRoundData() ;
@@ -314,6 +314,8 @@ contract ControllerPeggedAssetV2 {
if (answeredInRound < roundID) revert RoundIDOutdated();
+ if (updatedAt < block.timestamp - LIMIT) revert PriceQutdated();

return price;

Discussion

3xHarry

considering this

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/141
IAmOx52

Fix looks good. Controller will now revert if price is stale

20 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/141

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/108

Found by

OxRobocop, Oxnirlin, Oxvj, KingNFT, berndartmueller, bin2chen, charlesjhongc,
climber2002, evan, holyhansss, kenzo, libratus, Ityu, minhtrng, roguereddwarf,
warRoom, yixxas

Summary

An epoch can be resolved in three ways which correspond to the three functions
available in the Controller: triggerDepeg, triggerEndEpoch, triggerNullEpoch.

The issue is that triggerEndEpoch can be called even though triggerNullEpoch
should be called. "Null epoch" means that any of the two vaults does not have
funds deposited. In this case the epoch should be resolved with triggerNullEpoch
such that funds are not transferred from the premium vault to the collateral vault.

So in triggerEndEpoch is should be checked whether the conditions for a null epoch
apply. If that's the case, the triggerEndEpoch function should revert.

Vulnerability Detail

The assumption the code makes is that if the null epoch applies, triggerNullEpoch
will be called before the end timestamp of the epoch which is when
triggerEndEpoch can be called.

This is not necessarily true.

triggerNullEpoch might not be called in time (e.g. because the epoch duration is
very short or simply nobody calls it) and then the triggerEndEpoch function can be
called which sends the funds from the premium vault into the collateral vault:
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con
trollers/ControllerPeggedAssetV2.sol#L172-1L192

If the premium vault is the vault which has funds and the collateral vault does not,
then the funds sent to the collateral vault are lost.

Impact

Loss of funds for users that have deposited into the premium vault.

o @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/108
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L172-L192
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L172-L192

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con

trollers/ControllerPeggedAssetV2.sol#L144-L202

Tool used

\YERTEIREVIE

Recommendation

triggerEndEpoch should only be callable when the conditions for a null epoch don't
apply:

diff --git a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
— b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
index 0587c86..7b25cf3 100644
--- a/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
+++ b/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol
@@ -155,6 +155,13 @@ contract ControllerPeggedAssetV2 {
collateralVault.epochExists(_epochId) == false
) revert EpochNotExist();

+ if (
<+ premiumVault.totalAssets(_epochId) == 0 ||
+ collateralVault.totalAssets(_epochId) == 0
+) {
+ revert VaultZeroTVL();
+ }
+
(, uint40 epochEnd,) = premiumVault.getEpochConfig(_epochId);
if (block.timestamp <= uint256(epochEnd)) revert EpochNotExpired();
Discussion
3xHarry
fix PR: https://github.com/Y2K-Finance/Earthquake/pull/140
IAmOx52

Fix looks good. triggerEndEpoch can no longer be called on expired, null epochs

o5 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L144-L202
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L144-L202
https://github.com/Y2K-Finance/Earthquake/pull/140

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/110

Found by
Dug, Ruhum, bin2chen, nobody2018, roguereddwarf

Summary

The Controller contract sends treasury funds to its own immutable treasury
address instead of sending the funds to the one stored in the respective vault
contract.

Vulnerability Detail

Each vault has a treasury address that is assigned on deployment which can also
be updated through the factory contract:

But, the Controller, responsible for sending the fees to the treasury, uses the
immutable treasury address that it was initialized with:

Impact

It's not possible to have different treasury addresses for different vaults. It's also
not possible to update the treasury address of a vault although it has a function to
do that. Funds will always be sent to the address the Controller was initialized with.

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Vau
[tV2.s0l#L79 https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquak
e/src/v2/VaultV2.sol#L265-L268

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con
trollers/ControllerPeggedAssetV2.s0l#L186
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Con
trollers/ControllerPeggedAssetV2.sol#L40

Tool used

\YERTEIRREVIEY

23 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/110
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L79
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L79
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L265-L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L265-L268
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L186
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L186
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L40
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L40

Recommendation

The Controller should query the Vault to get the correct treasury address, e.g.:

Discussion

3xHarry

will use one location for the treasury address which will be on the factory.
3xHarry

fixed in https://github.com/Y2K-Finance/Earthquake/pull/137

IAmOx52

Needs additional changes. Controller still sends to it's immutable address and not
treasury address on factory

IAmMOx52

Fix looks good. Controller has been updated to use treasury address from factory

jacksanford1
Note: 0x52 is referring to this specific commit in the last message:
https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d

1da8cb1af624e90c12315953

o @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/137
https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d1da8cb1af624e90c12315953
https://github.com/Y2K-Finance/Earthquake/pull/137/commits/272199687465252d1da8cb1af624e90c12315953

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/122

Found by

0x52, Ch_301, bin2chen, carrot, cccz, hickuphh3, immeas, kenzo, libratus, Ityu,
roguereddwarf, sinarette

Summary

If either the premium and / or collateral vault has O TVL for an epoch with
emissions, those emissions will not be withdrawable by anyone.

Vulnerability Detail

The finalTVL set for a vault with O TVL (epoch will be nullified) will be 0. As a result,
emissions that were allocated to that vault are not withdrawable by anyone.

It's admittedly unlikely to happen since the emissionsToken is expected to be Y2K
which has value and is tradeable.

Impact

Emissions cannot be recovered.

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car

ousel/Carousel.sol#L157 https://github.com/sherlock-audit/2023-03-Y2K/blob/mai

n/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636

Tool used

Manual Review

Recommendation

Create a function to send emissions back to the treasury if an epoch is marked as
nullified.

A related issue is that if both the premium and collateral vaults have O TVL, only the
collateral vault gets marked as nullified. Consider handling this edge case.

95 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/122
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L157
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L157
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L630-L636

Discussion

3xHarry

great catch

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/139
IAmOx52

Fix looks good. setEpochNull is overridden in Carousel to transfer emissions back
to treasury

26 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/139

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/172

Found by

Ace-30, EIKu, Respx, ShadowForce, TrungOre, bin2chen, ck, evan, hickuphh3,
immeas, minhtrng, nobody2018, twicek

Summary

rolloverQueue is shared by all epochs. For each round of epoch, mintRollovers will
process rolloverQueue from the beginning. A normal user calls enlistInRollover to
enter the rolloverQueue, and in the next round of epoch, he will call
delistInRollover to exit the rolloverQueue. In this case, rolloverQueue.length is
acceptable. However, malicious user can make the rolloverQueue.length huge,
causing the relayer to consume a huge amount of gas for every round of epoch.
Carousel will send relayerFee to relayer in order to encourage external relayer to
call mintRollovers. Malicious user can make external relayer unwilling to call
mintRollovers. Ultimately, rolloverQueue will never be processed.

Vulnerability Detail

Let's assume the following scenario:

relayerFee is 1€18. The current epochld is E1, and the next epochld is E2. At
present, rolloverQueue has 10 normal user QueueItem. Bob has deposited 1000e18
assets before the start of E1, so balance0f (bob, E1) = 1000e18.

1. Bob creates 1000 addresses, each address has setApprovalForAll to bob. He
calls two functions for each address:

Carousel.safeTransferFrom(bob, eachAddress, E1, 1el8)

Carousel.enlistInRollover(E1, 1lel8, eachAddress), 1€18 equal to
minRequiredDeposit.

2. rolloverQueue.length equals to 1010(1000+10).

These 1000 addresses will never call delistInRollover to exit the rolloverQueue,
so no matter whether these addresses win or lose, their Queueltem will always be
in the rolloverQueue. In each round of epoch, the relayer has to process at least
1000 Queueltems, and these Queueltems are useless. Malicious users only need
to do it once to cause permanent affects.

When a normal user loses in a certain round of epoch, he may not call
delistinRollover to exit the rolloverQueue. For example, he left the platform and

o7 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/172

stopped playing. In this case, rolloverQueue.length will become larger and larger
as time goes by.

Carousel contract will not send any relayerFee to the relayer, because these
useless Queueltem will not increase the value
of [executions](https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Ea

rthquake/src/v2/Carousel/Carousel.sol#L447). Obviously, calling mintRollovers
has no benefit for the relayer. Therefore, no relayer is willing to do this.

Impact

The relayer consumes a huge amount of gas for calling mintRollovers for each
round of epoch. In other words, as long as the rolloverQueue is unacceptably
long, it is a permanent DOS.

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L.361-L459

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L238-L271

Tool used

Manual Review

Recommendation

We should change the single queue to queue mapping. In this way, relayer only
needs to process the queue corresponding to the epochld.

--- a/Earthquake/src/v2/Carousel/Carousel . sol

+++ b/Earthquake/src/v2/Carousel/Carousel.sol

@@ -23,7 +23,7 @@ contract Carousel is VaultV2 {
IERC20 public immutable emissionsToken;

mapping(address => uint256) public ownerToRollOverQueueIndex;
= Queueltem[] public rolloverQueue;
+ mapping (uint256 => Queueltem[]) public rolloverQueues;
Queueltem[] public depositQueue;
mapping(uint256 => uint256) public rolloverAccounting;
mapping (uint256 => mapping(address => uint256)) public _emissionsBalances;

28 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol##L447
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238-L271
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L238-L271

Discussion
3xHarry
| would disagree with the feasibility of this attack.

1. there is a non neglectable minDeposit which makes this attack much more
expensive

2. the queue can be processed in multiple transactoins and the relayerFee is
supposed to be configured so much so that each processed item gas
consumption is reimbursed with a profit

IAmOx52

Issue has been acknowledged by sponsor

29 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/174

Found by
OKage, Oxmuxyz, Ruhum, TrungOre, ck, csanuragjain, hickuphh3, jprod15, twicek

Summary

Due to FILO (first in last out) stack structure, while dequeuing, the first few entries
may never be retrieved. These means User deposit may never be entertained from
deposit queue if there are too many deposits

Vulnerability Detail
1. Assume User A made a deposit which becomes 1st entry in depositQueue
2. Post this X more deposits were made, SO depositQueue.length=X+1

3. Relayer calls mintDepositInQueue and process X-9 deposits

while ((length - _operations) <= i) {
// this loop impelements FILO (first in last out) stack to reduce gas
— cost and improve code readability
// changing it to FIFO (first in first out) would require more code
— changes and would be more expensive
_mintShares(
queue[i] .receiver,
_epochld,
queue[i] .assets - relayerFee
)3
emit Deposit(
msg.sender,
queue[i] .receiver,
_epochld,
queue[i] .assets - relayerFee
)3
depositQueue.pop();
if (i == 0) break;
unchecked {
i--;

}

4. This reduces deposit queue to only 10

30 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/174

5. Before relayer could process these, Y more deposits were made which
increases deposit queue to y+10

6. This means Relayer might not be able to again process User A deposit as this
deposit is lying after processing Y+9 deposits
Impact

User deposit may remain stuck in deposit queue if a large number of deposit are
present in queue and relayer is interested in dequeuing all entries

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L310

Tool used

Manual Review

Recommendation

Allow User to dequeue deposit queue based on index, so that if such condition
arises, user would be able to dequeue his deposit (independent of relayer)

Discussion
3xHarry

depositing into queue should count as committing to an epoch. By giving the user
the ability to delist his queue he could take advantage of market movements.
However, we will raise min deposit for the queue to make DDoS very expensive.

twicek
Escalate for 10 USDC

My issues #62 and #63 are both marked as duplicate of this issue when only #63 is
actually a duplicate. #63 is a duplicate of #174 who both relate to how queued
deposits can get stuck in the deposit queue for various reasons. #62 however,
does not describe anything related to both the deposit queue and the separate fact
that a there is DoS attack vector. Instead, it relates to how relayers can get griefed
because unrollable rollover items in the rollover queue can aggregate and lead
them to not get paid for their work. In the duplicates, that | will cite below, this issue
is achieved in various different ways but they all lead to the same impact.

Therefore, to reiterate, the #62 and #63 are different because they don't involve
the same states, attack vector and users. #63 involve the deposit queue and a DoS

31 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L310

attack that lead to economic damage for regular users of the protocol. #62 involve
the rollover queue and a griefing attack that lead to economic damage for relayers.

In my judging repos | market as duplicate of #63: #79 #82 #114 #174 #220 #274
#295 #317 #342 #431 #447 and as duplicate of #62: #80 #218 #235 #275 #284
#309 #393 #411 #475

From what | have seen all or almost all this issue are present here as duplicate of
#174. A lot of people submitted them as different issues because they are indeed
completely different. | might have made some mistakes in my judging, but it's
mostly consistent with what | say above. Specifically, | missed #176 for which |
partially agree with the escalation of securitygrid that it should not be a duplicate
of #174 but it also should not be a solo finding because it is a duplicate of #62 and
its duplicates.

sherlock-admin
Escalate for 10 USDC

My issues #62 and #63 are both marked as duplicate of this issue when
only #63 is actually a duplicate. #63 is a duplicate of #174 who both
relate to how queued deposits can get stuck in the deposit queue for
various reasons. #62 however, does not describe anything related to
both the deposit queue and the separate fact that a there is DoS attack
vector. Instead, it relates to how relayers can get griefed because
unrollable rollover items in the rollover queue can aggregate and lead
them to not get paid for their work. In the duplicates, that | will cite
below, this issue is achieved in various different ways but they all lead to
the same impact.

Therefore, to reiterate, the #62 and #63 are different because they don't
involve the same states, attack vector and users. #63 involve the deposit
queue and a DoS attack that lead to economic damage for regular users
of the protocol. #62 involve the rollover queue and a griefing attack that
lead to economic damage for relayers.

In my judging repos | market as duplicate of #63: #79 #82 #114 #174
#220 #274 #295 #317 #342 #431 #447 and as duplicate of #62: #80
#218 #235 #275 #284 #309 #393 #411 #475

From what | have seen all or almost all this issue are present here as
duplicate of #174. A lot of people submitted them as different issues
because they are indeed completely different. | might have made some
mistakes in my judging, but it's mostly consistent with what | say above.
Specifically, | missed #176 for which | partially agree with the escalation
of securitygrid that it should not be a duplicate of #174 but it also should
not be a solo finding because it is a duplicate of #62 and its duplicates.

You've created a valid escalation for 10 USDC!

32 @/ SHERLOCK

To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

dmitriia
Agree re 62, here the issues were grouped per 'pop' allowing for various
manipulations.

hrishibhat
Escalation accepted

After reviewing the issues and all its duplicates, given the complexity as well as the
similarities between these issues, the fair move would be to split up these issues
into two categories based on the functions of the root cause: mintDepositInQueue &
mintRollovers. These two categories of duplicates primarily contain issues related
to large queue lengths resulting in dos or insufficient relayer incentives from the
same root cause.

sherlock-admin
Escalation accepted

After reviewing the issues and all its duplicates, given the complexity as
well as the similarities between these issues, the fair move would be to
split up these issues into two categories based on the functions of the
root cause: mintDepositInQueue & mintRollovers. These two categories
of duplicates primarily contain issues related to large queue lengths
resulting in dos or insufficient relayer incentives from the same root
cause.

This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

IAmMOx52

Issue has been acknowledged by sponsor

33 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/208

Found by
HonorlLt, VAD37, bin2chen, nobody2018

Summary

changeTreasury() Lack of check and remove old

Vulnerability Detail

changeTreasury() used to set new treasury The code is as follows

function changeTreasury(uint256 _marketId, address _treasury)
public
onlyTimeLocker

if (_treasury == address(0)) revert AddressZero();
address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist (_marketId);

}

IVaultV2(vaults[0]) .whiteListAddress(_treasury) ;

IVaultV2(vaults[1]) .whiteListAddress(_treasury) ;

IVaultV2(vaults[0]) .setTreasury(treasury) ;

IVaultV2(vaults[1]) .setTreasury (treasury) ;

emit AddressWhitelisted(_treasury, _marketId);

The above code has the following problem:

1. no check whether the new treasury same as the old. If it is the same, the
whitelist will be canceled.

2. Use setTreasury(VaultFactoryV2.treasury), it should be setTreasury(_treasury)

3. not cancel old treasury from the whitelist

34 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/208

Impact

whiteListAddress abnormal

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Vau
ItFactoryV2.sol#L228

Tool used

Manual Review

Recommendation

function changeTreasury(uint256 _marketId, address _treasury)
public
onlyTimeLocker

if (_treasury == address(0)) revert AddressZero();
address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist(_marketId) ;

+ require(vaults[0] .treasury() !=_treasury,"same"); //check same

+ IVaultV2(vaults[0]) .whiteListAddress(vaults[0].treasury()); //cancel old
— whitelist

* IVaultV2(vaults[1]) .whiteListAddress(vaults[1].treasury()); //cancel old
— whitelist

IVaultV2(vaults[0]) .whiteListAddress(_treasury);
IVaultV2(vaults[1]) .whiteListAddress(_treasury) ;
+ IVaultV2(vaults[0]) .setTreasury(_treasury) ;
+ IVaultV2(vaults[1]) .setTreasury(_treasury) ;
- IVaultV2(vaults[0]) .setTreasury(treasury) ;
- IVaultV2(vaults[1]) .setTreasury (treasury) ;

emit AddressWhitelisted(_treasury, _marketId);

Discussion
dmitriia

35 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228

Keeping it separate from 435 because of whitelist observation (1)
pauliax

Escalate for 10 USDC.

| believe it is unfair to leave it as a solo medium.

#410 also mentions the problem with whitelisting: "Also, probably the old treasury
should be removed from the whitelist to prevent accidental abuse of privileges." but
was grouped together with other issues from #435.

sherlock-admin
Escalate for 10 USDC.
| believe it is unfair to leave it as a solo medium.

#410 also mentions the problem with whitelisting: "Also, probably the old
treasury should be removed from the whitelist to prevent accidental
abuse of privileges." but was grouped together with other issues from
#435.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

3xHarry
fix Pr: https://github.com/Y2K-Finance/Earthquake/pull/137
hrishibhat

Escalation accepted

Added relevant duplicates based on whitelist observation
sherlock-admin

Escalation accepted

Added relevant duplicates based on whitelist observation
This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

IAmOx52
Fixes look good. Carousel now directly uses the treasury address sent on factory

36 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/137

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/293

Found by

cccz, iglyx, roguereddwarf

Summary

mintRollovers should require entitledShares >= relayerFee

Vulnerability Detail

In mintRollovers, the rollover is only not skipped if queue[index].assets >=
relayerFee,

if (entitledShares > queue[index].assets) {
// skip the rollover for the user if the assets cannot cover the relayer fee
— 1instead of revert.
if (queue[index] .assets < relayerFee) {
index++;
continue;

In fact, since the user is already profitable, entitledShares is the number of assets
of the user, which is greater than queue[index].assets, so it should check that
entitledShares >= relayerFee, and use entitledShares instead of
queuelindex].assets to subtract relayerFee when calculating assetsToMint later.

Impact

This will prevent rollover even if the user has more assets than relayerFee

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Car
ousel/Carousel.sol#L401-L406

Tool used

Manual Review

37 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/293
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406

Recommendation
Change to

if (entitledShares > queue[index].assets) {
// skip the rollover for the user if the assets cannot cover
— the relayer fee instead of revert.
if (queue[index].assets < relayerFee) {

< if (entitledShares < relayerFee) {
index++;
continue;
}
uint256 assetsToMint = queue[index].assets - relayerFee;
+ uint256 assetsToMint = entitledShares - relayerFee;
Discussion
3xHarry
fix PR: https://github.com/Y2K-Finance/Earthquake/pull/136
IAmOx52

Needs additional changes. L423 doesn't make sense to me. queue[index].assets is
in shares and entitledAmount isn't but they are subtracted directly.

3xHarry

@IAmMOx52 thx for your comment, basically since Queueltem.asset (later renamed to
shares) represents share of the epoch, i converted relayerFee which is
denominated in underlying asset to shares for that epoch. Later i realized that
Users only want to rollover their original deposit value, therefore i burn the original
deposit Value and mint this value - relayerFeelnShares into the next epoch, the
winnings sahres amount are left in the epoch to be withdrawn

jacksanford1
Bringing in some Discord discussion:
0x52

For 293 your comment then conflicts with how you take the fee because
you're charging the user the relayer fee for epoch n+1 but you're using
epoch n to estimate. You should just take the fee directly not convert it
into shares

3xHarry

@0x52 thx for raising this concern: uint256 relayerFeelnShares =
previewAmountinShares(queuelindex].epochld, relayerFee); converts

38 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/136

relayerFee into amount of shares of prev epoch (epoch users wants to
rollover collateral from)

uint256 assetsToMint = queue[index].assets - relayerFeelnShares;
assets represent shares in prev epoch and arrimetic operation is done in
same denominator (shares in queuelindex].epochld)

0x52
Shares and assets are 1:1 for the open epoch correct?

So imagine this scenario. You deposit 100 asset into epoch 1 to get 100
shares in epoch 1. Now you queue them into the rollover.

Epoch 1 ends with a profit of 25% which means your 100 shares are now
worth 125. 80 shares are burned (worth 100 assets) leaving the user with
20 shares for epoch 1.

If the relayer fee is 10 then it will be converted to 8 shares of epoch 2.
But epoch 2 is still 1:1 with assets so it's only taking 8 assets from the
user but sending them 10 asset as the relayer fee So you either need to
reduce epoch 1 shares by 8 (i.e. leave the user with 12 shares) or you
need to reduce assetsToMint by relayer fee directly (i.e. only mint 90 to
epoch 2)

jacksanford1
Bringing in some discussion from Y2K's repo:
3xHarry

@IAMOx52 thx for noticing the relayerFeelnShares Bug | will close this
PR, but fix can be observed in 9165674

https://github.com/Y2K-Finance/Earthquake/pull/136#issuecomment-1541996529
IAmOx52

Fix looks good. Fee is no longer converted since epoch in which fee is removed is
always 1:1

39 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/136/commits/916567485713007e75d39479c983ea26e7aed607
https://github.com/Y2K-Finance/Earthquake/pull/136#issuecomment-1541996529

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/337

Found by

ast3ros

Summary

The VaultFactoryV2 contract is supposed to use a timelock contract with a delay
period when changing its owner. However, there is a loophole that allows the owner
to change the owner address instantly, without waiting for the delay period to
expire. This defeats the purpose of the timelock contract and exposes the
VaultFactoryV2 contract to potential abuse.

Vulnerability Detail

In project description, timelock is required when making critical changes. Admin
can only configure new markets and epochs on those markets.

2) Admin can configure new markets and epochs on those markets, Timelock can
— make cirital changes like changing the oracle or whitelisitng controllers.

The VaultFactoryV2 contract has a changeOwner function that is supposed to be
called only by the timelock contract with a delay period.

function changeOwner (address _owner) public onlyTimeLocker {
if (_owner == address(0)) revert AddressZero();
_transferOwnership(_owner) ;

The VaultFactoryV2 contract inherits from the Openzeppelin Ownable contract,
which has a transferOwnership function that allows the owner to change the owner
address immediately. However, the transferOwnership function is not overridden by
the changeOwner function, which creates a conflict and a vulnerability. The owner
can bypass the timelock delay and use the transferOwnership function to change
the owner address instantly.

function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner) ;

40 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/337

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Vau
ItFactoryV2.sol#L.325-L328

Impact

The transferOwnership is not worked as design (using timelock), the timelock delay
become useless. This means that if the owner address is hacked or corrupted, the
attacker can take over the contract immediately, leaving no time for the protocol
and the users to respond or intervene.

Code Snippet

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Vau
ItFactoryV2.sol#L.325-1.328

Tool used

Manual Review

Recommendation

Override the transferOwnership function and add modifier onlyTimeLocker.

Discussion

thangtranth
Escalate for 10 USDC.

This issue is different from #5071 and cannot be ignored. It is not related to using
two steps to change ownership. The problem here is that the transferOwnership
function in the Ownable contract is not overridden as it should be. This allows the
owner to change the ownership without going through the timelock. This creates a
severe security risk and undermines the trust and transparency of the protocol as
stated in spec.

sherlock-admin
Escalate for 10 USDC.

This issue is different from #5071 and cannot be ignored. It is not related
to using two steps to change ownership. The problem here is that the
transferOwnership function in the Ownable contract is not overridden as
it should be. This allows the owner to change the ownership without
going through the timelock. This creates a severe security risk and
undermines the trust and transparency of the protocol as stated in spec.

ac @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L325-L328

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

hrishibhat
Escalation accepted

Not a duplicate of #501 and can be considered a valid medium since this identifies
the issue that transferOwnership iS not overridden and needs to have
‘onlyTimeLocker' modifier,

sherlock-admin
Escalation accepted

Not a duplicate of #501 and can be considered a valid medium since this
identifies the issue that transferOwnership is not overridden and needs
to have ‘onlyTimeLocker' modifier,

This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

hrishibhat
Lead Judge comment:

looks valid, maybe med, if they intend to do it without a delay is one thing
and to be documented, but if a function just left not overriden it's a bug

Sponsor comment:

Actually thats valid issue, fixing this will make this action more
complicated. My thinking is to add a direct function on timelocker which
lets timelocker execute the owner (deployer) change without 7day queue.

3xHarry
FIX RP: https://github.com/Y2K-Finance/Earthquake/pull/147 - last two commits
IAmOx52

Fix looks good. changeOwner has been removed and transferOwnership has been
overridden to allow only timelocker

a5 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/147

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/418

Found by

berndartmueller, evan, kenzo

Summary

If the deposited assets for a queued rollover item are equal to the relayer fee, the
rollover will be minted with 0 shares, potentially leading to zero TVL and hence
finalTVL[_id] = 0. This will cause the previewWithdraw call to revert due to division
by zero and the rollover queue will be stuck forever.

Vulnerability Detail

Minting rollovers in the carousel vault iterates over all items in the rolloverQueue
queue. Each item is processed, and the entitled shares (entitledShares) are
calculated using previewWithdraw. If the

entitled shares are greater than the deposited assets), the rollover is minted.

However, if the deposited assets for the queued item are equal to the relayer fee,
the assets to mint (assetsToMint) calculated in line 436 will be 0.

If this happens to be the only deposit (mint) for the epoch and the vaults TVL
remains zero, the previewWithdraw call in line 396 will revert due to division by zero.

Impact

Once there is a rollover minted with 0 shares for an epoch and the vaults TVL (i.e.,
finalTVL) remains zero, the rollover queue will be stuck forever unless the owner of
this queue item delists it.

Code Snippet

src/v2/Carousel/Carousel.mintRollovers

361: function mintRollovers(uint256 _epochId, uint256 _operations)
362: external

363: epochIdExists (_epochId)
364: epochHasNotStarted (_epochId)
365: nonReentrant
366: {
/7 L.

43 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/418
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L403
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L366
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L396-L399

392:
393:
394:
395:
396:

—

397:
398:
399:
400:
401:
402:

—

403:
404 :
405:
406:
407 :
408:
409:
410:
411:
412:
413:

—

414
415:
416:
417:
418:
419:

—

420:
421 :
422
423:
424 .
425
426:
427 :
428:
429:
430:
431:
432:
433:
434 .
435:

while ((index - prevIndex) < (_operations)) {
// only roll over if last epoch is resolved
if (epochResolved[queue[index] .epochId]) {

@> uint256 entitledShares = previewWithdraw(// Qaudit-info

reverts if epoch's “finalTVL® ==
queue [index] .epochlId,
queue [index] . assets
)3
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

// skip the rollover for the user if the assets cannot

cover the relayer fee instead of revert.
if (queue[index] .assets < relayerFee) {
index++;
continue;

}

// @note we know shares were locked up to this point

_burn(
queue [index] .receiver,
queue [index] .epochld,
queue [index] .assets

)

// transfer emission tokens out of contract otherwise user

could not access them as vault shares are burned
_burnEmissions (
queue [index] .receiver,
queue [index] .epochId,
queue [index] . assets

)

// @note emission token is a known token which has no

before transfer hooks which makes transfer safer
emissionsToken.safeTransfer (
queue [index] .receiver,
previewEmissionsWithdraw(
queue [index] . epochlId,
queue [index] .assets

)

emit Withdraw(
msg.sender,
queue [index] .receiver,
queue [index] .receiver,
_epochld,
queue [index] .assets,
entitledShares

44

V SHERLOCK

437 :
438:
439:
440:
441 :
442
443:
444 :
445:
446:
447 .
448:
449:
450:
451 :
452:

459: }

436: ©>
— Oaudit-info “assetsToMint™ can potentially become O

uint256 assetsToMint = queue[index].assets - relayerFee; //

_mintShares (queue[index] .receiver, _epochId, assetsToMint);
emit Deposit(

msg.sender,

queue [index] .receiver,

_epochld,

assetsToMint
i

rolloverQueue[index] .assets = assetsToMint;

rolloverQueue [index] .epochId = _epochlId;
// only pay relayer for successful mints
executions++;
}
}
index++;
}
/7 L...]

src/v2/VaultV2.previewWithdraw

358:
359:
360:
361:
362: {
363:
364 :

365:

357: function previewWithdraw(uint256 _id, uint256 _assets)

public

view

override (SemiFungibleVault)
returns (uint256 entitledAmount)

// entitledAmount amount is derived from the claimTVL and the finalTVL
// if user deposited 1000 assets and the claimTVL is 50% lower than

— finalTVL, the user is entitled to 500 assets

// if user deposited 1000 assets and the claimTVL is 50% higher than

— finalTVL, the user is entitled to 1500 assets

366: entitledAmount = _assets.mulDivDown(claimTVL[_id], finalTVL[_id]);
367: }
Tool used

\YERTEIRGEVIE

Recommendation

Consider checking the total assets of the epoch queue[index] .epochld to be
greater than O before calling previewWithdraw in line 396.

45 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultV2.sol#L366

Discussion
3xHarry

will move check from line 403 up before previewWithdraw, also considering
implementing rollover delisting if assetsToMint is less than relayerFee

3xHarry

in general delisting of stale rollovers (not enough to pay for relayer, or not won prev
epoch) should be delisted by smart contract.

3xHarry
fix PR: https://github.com/Y2K-Finance/Earthquake/pull/133
IAmOx52

Needs additional changes. This still doesn't address the issue of minting 0 because
if assets == relayerFee then it will still mint 0. Should instead be:

if (queue[index].assets <= relayerFee) {

IAmOx52

Fix looks good. Suggested change above has been added

jacksanford1

Note: 0x52 referenced this commit in their second message from PR #133:

https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7
c61bef4a8847f7c107f2b630

46 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/133
https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7c61bef4a8847f7c107f2b630
https://github.com/Y2K-Finance/Earthquake/pull/133/commits/9edaa8a5da96edf7c61bef4a8847f7c107f2b630

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/422

Found by

Dug, Respx, ShadowForce, berndartmueller, holyhansss, libratus, Ityu, spyrosonic10

Summary

A depeg event can not be triggered if the Arbitrum sequencer went down before
the epoch ends and remains down beyond the epoch expiry. Instead, the collateral
vault users can unfairly end the epoch without a depeg and claim the premium
payments.

Vulnerability Detail

A depeg event can be triggered during an ongoing epoch by calling the
ControllerPeggedAssetV2.triggerDepeg function. This function retrieves the latest
price of the pegged asset via the getLatestPrice function.

If the Arbitrum sequencer is down or the grace period has not passed after the
sequencer is back up, the getLatestPrice function reverts and the depeg event can
not be triggered.

In case the sequencer went down before the epoch expired and remained down
well after the epoch expired, a depeg can not be triggered, and instead, the epoch
can be incorrectly ended without a depeg by calling the
ControllerPeggedAssetV2.triggerEndEpoch function. Incorrectly, because at the
time of the epoch expiry, it was not possible to trigger a depeg and hence it would
be unfair to end the epoch without a depeg.

Impact

A depeg event can not be triggered, and premium vault users lose out on their
insurance payout, while collateral vault users can wrongfully end the epoch and
claim the premium.

Code Snippet
v2/Controllers/ControllerPeggedAssetV2.sol - triggerDepeg()

051: function triggerDepeg(uint256 _marketId, uint256 _epochId) public {
052: address[2] memory vaults = vaultFactory.getVaults(_marketId);
053:

po @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/422
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L62

054:
055:
056:
057:
058:
059:
060:
061:
062:
063:
064:
065:
066:

138: }

if (vaults[0] == address(0) || vaults[1] == address(0))
revert MarketDoesNotExist (_marketId);

IVaultV2 premiumVault = IVaultV2(vaults[0]);
IVaultV2 collateralVault = IVaultV2(vaults[1]);

if (premiumVault.epochExists(_epochId) == false) revert EpochNotExist();
int256 price = getLatestPrice(premiumVault.token());

if (int256(premiumVault.strike()) <= price)
revert PriceNotAtStrikePrice(price);

/7 L]

v2/Controllers/ControllerPeggedAssetV2.sol - getLatestPrice()

273: function getlLatestPrice(address _token) public view returns (int256) {

274 : (
275: s
276: /*uint80 roundIdx*/
277 : int256 answer,
278: uint256 startedAt, /*uint256 updatedAt*/ /*uint80 answeredInRound*/
279: ,
280:
281:) = sequencerUptimeFeed.latestRoundData() ;
282:
283: // Answer == 0: Sequencer is up
284: // Answer == 1: Sequencer is down
285: bool isSequencerUp = answer == 0;
286: if (!isSequencerUp) {
287: revert SequencerDown() ;
288: }
289:
290: // Make sure the grace period has passed after the sequencer is back up.
291: uint256 timeSinceUp = block.timestamp - startedAt;
292: if (timeSinceUp <= GRACE_PERIOD_TIME) {
293: revert GracePeriodNotOver() ;
294: }
295:
/7 [...]
318: }
Tool used

\YERTEIREVIE

48 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L287

Recommendation

Consider adding an additional “"challenge" period (with reasonable length of time)
after the epoch has expired and before the epoch end can be triggered without a
depeg.

Within this challenge period, anyone can claim a depeg has happened during the
epoch's expiry and trigger the epoch end. By providing the Chainlink round id's for
both feeds (sequencer and price) at the time of the epoch expiry (epochEnd), the
claim can be verified to assert that the sequencer was down and the strike price
was reached.

Discussion
3xHarry

We are aware of this mechanic, however, users prefer to have the atomicity of
instant settlement, this is so that users can utilize farming y2k tokens most
effectively by rotating from one epoch to the next. Users are made aware of the
risks when using chainlink oracles as well as the execution environment being on
Arbitrum.

pauliax
Escalate for 10 USDC.

| believe this should be low severity because it falls under the misbehaving of
infrastructure and integrations:

Q: In case of external protocol integrations, are the risks of an external protocol
pausing or executing an emergency withdrawal acceptable? If not, Watsons will
submit issues related to these situations that can harm your protocol's
functionality. A: [NOT ACCEPTABLE]

sherlock-admin
Escalate for 10 USDC.

| believe this should be low severity because it falls under the
misbehaving of infrastructure and integrations:

Q: In case of external protocol integrations, are the risks of an external
protocol pausing or executing an emergency withdrawal acceptable?
If not, Watsons will submit issues related to these situations that can
harm your protocol's functionality. A: [NOT ACCEPTABLE]

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

49 @/ SHERLOCK

hrishibhat
Escalation rejected

Valid medium This is a valid issue as the readme indicates that risks associated
with external integrations are not acceptable. That means issues are acceptable.

However, Sherlock acknowledges the escalator's concern about some of these
issues and will consider addressing them in the next update of the judging
guidelines.

sherlock-admin
Escalation rejected

Valid medium This is a valid issue as the readme indicates that risks
associated with external integrations are not acceptable. That means
issues are acceptable.

However, Sherlock acknowledges the escalator's concern about some of
these issues and will consider addressing them in the next update of the
judging guidelines.

This issue's escalations have been rejected!

Watsons who escalated this issue will have their escalation amount deducted from
their next payout.

IAmOx52

Issue has been acknowledged by sponsor

50 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/435

Found by

0x52, Oxnirlin, Dug, EIKu, TrungOre, ast3ros, holyhansss, ni8mare, roguereddwarf,
spyrosonic10, volodya, warRoom

Summary

VaultFactoryV2#changeTreasury misconfigures the vault because the setTreasury

subcall uses the wrong variable

Vulnerability Detail
VaultFactoryV2.sol#L228-L246

function changeTreasury(uint256 _marketId, address _treasury)
public
onlyTimeLocker

if (_treasury == address(0)) revert AddressZero();

address[2] memory vaults = marketIdToVaults[_marketId];

if (vaults[0] == address(0) || vaults[1] == address(0)) {
revert MarketDoesNotExist (_marketId);

}

IVaultV2(vaults[0]) .whiteListAddress(_treasury);

IVaultV2(vaults[1]) .whitelListAddress(_treasury) ;

IVaultV2(vaults[0]) .setTreasury(treasury) ;

IVaultV2(vaults[1]) .setTreasury(treasury) ;

emit AddressWhitelisted(_treasury, _marketId);

When setting the treasury for the underlying vault pair it accidentally use the
treasury variable instead of _treasury. This means it uses the local VaultFactoryV2
treasury rather than the function input.

ControllerPeggedAssetV2.sol#L111-L123

51 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/435
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/VaultFactoryV2.sol#L228-L246
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L111-L123

premiumVault.sendTokens (_epochId, premiumFee, treasury);
premiumVault.sendTokens (

_epochld,

premiumTVL - premiumFee,

address(collateralVault)
)
// strike price is reached so collateral is still entitled to premiumTVL -
— premiumFee but looses collateralTVL
collateralVault.sendTokens(_epochId, collateralFee, treasury);
collateralVault.sendTokens(

_epochld,

collateralTVL - collateralFee,

address (premiumVault)

)

This misconfiguration can be damaging as it may cause the triggerDepeg call in the
controller to fail due to the sendToken subcall. Additionally the time lock is the one
required to call it which has a minimum of 3 days wait period. The result is that
valid depegs may not get paid out since they are time sensitive.

Impact

Valid depegs may be missed due to misconfiguration

Code Snippet
ControllerPeggedAssetV2.sol#L51-L138

Tool used

Manual Review

Recommendation

Set to _treasury rather than treasury.

Discussion

3xHarry

good catch!

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/132
IAmOx52

59 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Controllers/ControllerPeggedAssetV2.sol#L51-L138
https://github.com/Y2K-Finance/Earthquake/pull/132

Fix looks good. setTreasury now correctly uses _treasury rather than treasury

53 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/442

Found by
0x52, berndartmueller, bin2chen, iglyx, pOwd3r

Summary

When rolling a position it is required that the user didn't payout on the last epoch.
The issue with the check is that if a null epoch is triggered then rollovers will break
even though the vault didn't make a payout

Vulnerability Detail
Carousel.sol#L.401-L406

uint256 entitledShares = previewWithdraw(
queue [index] .epochld,
queue [index] .assets
)
// mint only if user won epoch he is rolling over
if (entitledShares > queue[index].assets) {

When minting rollovers the following check is made so that the user won't
automatically roll over if they made a payout last epoch. This check however will fail
if there is ever a null epoch. Since no payout is made for a null epoch it should
continue to rollover but doesn't.

Impact

Rollover will halt after null epoch

Code Snippet
Carousel.sol#L361-L459

Tool used

Manual Review

Recommendation

Change to less than or equal to:

54 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/442
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L401-L406
https://github.com/sherlock-audit/2023-03-Y2K/blob/main/Earthquake/src/v2/Carousel/Carousel.sol#L361-L459

if (entitledShares > queue[index].assets) {

+ if (entitledShares >= queue[index].assets) {
Discussion
3xHarry

makes sense
3xHarry

Won't be able to fix this edge case. Changes in the rollover queue make it now that
positions are not deleted anymore but rather marked to O to prevent rollover queue
manipulation. In this case, users would have to resolve their stuck rollover position
manually. https://github.com/Y2K-Finance/Earthquake/pull/127

IAmMOx52

Issue has been acknowledged by sponsor

55 @/ SHERLOCK

https://github.com/Y2K-Finance/Earthquake/pull/127

Source: https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/480

Found by

Inspex, KingNFT, TrungOre, b4by_y0d4, berndartmueller, datapunk, evan,
minhtrng, roguereddwarf, sinarette, toshii, volodya, yixxas

Summary
The epochBegin timestamp is used inconsistently and could lead to user funds

being locked.

Vulnerability Detail

The function ControllerPeggedAssetV2.triggerNullEpoch checks for timestamp like
this:

if (block.timestamp < uint256(epochStart)) revert EpochNotStarted();

The modifier epochHasNotStarted (used by Carousel .deposit) checks it like this:

if (block.timestamp > epochConfig[_id].epochBegin)
revert EpochAlreadyStarted();

Both functions can be called when block.timestamp == epochBegin. This could lead
to a scenario where a deposit happens after triggerNullEpoch is called (both in the
same block). Because triggerNullEpoch sets the value for finalTVL, the TVL that
comes from the deposit is not accounted for. If emissions have been distributed
this epoch, this will lead to the incorrect distribution of emissions and once all
emissions have been claimed the remaining assets will not be claimable, due to
reversion in withdraw when trying to send emissions:

function previewEmissionsWithdraw(uint256 _id, uint256 _assets)
public
view
returns (uint256 entitledAmount)

{

entitledAmount = _assets.mulDivDown(emissions[_id], finalTVL[_id]);

¥

//in withdraw:
uint256 entitledEmissions = previewEmissionsWithdraw(_id, _assets);

56 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K-judging/issues/480

if (epochNull[_id] == false) {
entitledShares = previewWithdraw(_id, _assets);
} else {
entitledShares = _assets;
}
if (entitledShares > 0) {
SemiFungibleVault.asset.safeTransfer(_receiver, entitledShares);
}
if (entitledEmissions > 0) {
emissionsToken.safeTransfer(_receiver, entitledEmissions);

}

The above could also lead to revert through division by O if finalTVL is set to O,
even though the deposit after was successful.

Impact

incorrect distribution, Loss of deposited funds

Code Snippet
https://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30

edfa548f7aelaef/Earthquake/src/v2/VaultV2.sol#L433

Tool used

\YERTEIRREVIEY

Recommendation

The modifier epochHasNotStarted should use >= as comparator

Discussion

3xHarry

fix PR: https://github.com/Y2K-Finance/Earthquake/pull/130
IAmOx52

Fix looks good to me. Small inequality change for consistency

57 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30edfa548f7ae1aef/Earthquake/src/v2/VaultV2.sol#L433
https://github.com/sherlock-audit/2023-03-Y2K/blob/ae7f210d8fbf21b9abf09ef30edfa548f7ae1aef/Earthquake/src/v2/VaultV2.sol#L433
https://github.com/Y2K-Finance/Earthquake/pull/130

